A new solution to a weakly non-linear heat conduction equation in a spherical droplet: Basic idea and applications

Bibliografske podrobnosti
Parent link:International Journal of Heat and Mass Transfer.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 219.— 2024.— Article number 124880, 10 p.
Korporativna značnica: National Research Tomsk Polytechnic University
Drugi avtorji: Antonov D. V. Dmitry Vladimirovich, Shchepakina E. A. Elena Anatoljevna, Sobolev V. A. Vladimir Aleksandrovich, Starinskaya E. M. Elena Mikhaylovna, Terekhov V. V. Vladimir Vladimirovich, Strizhak P. A. Pavel Alexandrovich, Sazhin S. S. Sergey Stepanovich
Izvleček:Title screen
A new analytical solution to a non-linear heat transfer equation in a spherically-symmetric droplet is suggested. All thermophysical properties inside the droplet are considered to be close to their average values. This allows us to consider the non-linearity of this equation as weak. The solution is presented as 𝑇=𝑇0+𝑇1, where 𝑇0 is the solution to a linear heat conduction equation, and 𝑇1≪𝑇0. The equation for 𝑇1 is presented as a linear heat conduction equation with a source term depending on the distribution of 𝑇0 and its spatial derivatives inside the droplet. The latter equation is solved analytically alongside the linear equation for 𝑇0, and the final solution is presented as 𝑇=𝑇0+𝑇1. The predictions of the numerical code in which this solution was implemented are verified based on a comparison of those predictions with the predictions of COMSOL Multiphysics code using input parameter values that are typical for nanofluid (water and SiO2 nanoparticles) droplet evaporation in atmospheric conditions. It is demonstrated that for these experiments 𝑇1≪𝑇0 which justifies the applicability of the linear heat conduction equation used for the analysis of this process. Small differences in the temperatures predicted by both non-linear and linear models lead to a much more noticeable difference in integral characteristics such as time before the start of the formation of the cenosphere when the mass fraction of nanoparticles at the droplet surface reaches about 40%
Текстовый файл
AM_Agreement
Jezik:angleščina
Izdano: 2024
Teme:
Online dostop:https://doi.org/10.1016/j.ijheatmasstransfer.2023.124880
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672799

MARC

LEADER 00000naa0a2200000 4500
001 672799
005 20241218112719.0
090 |a 672799 
100 |a 20240528d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a A new solution to a weakly non-linear heat conduction equation in a spherical droplet: Basic idea and applications  |f D. V. Antonov, E. A. Shchepakina, V. A. Sobolev [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 25 tit 
330 |a A new analytical solution to a non-linear heat transfer equation in a spherically-symmetric droplet is suggested. All thermophysical properties inside the droplet are considered to be close to their average values. This allows us to consider the non-linearity of this equation as weak. The solution is presented as =0+1, where 0 is the solution to a linear heat conduction equation, and 1≪0. The equation for 1 is presented as a linear heat conduction equation with a source term depending on the distribution of 0 and its spatial derivatives inside the droplet. The latter equation is solved analytically alongside the linear equation for 0, and the final solution is presented as =0+1. The predictions of the numerical code in which this solution was implemented are verified based on a comparison of those predictions with the predictions of COMSOL Multiphysics code using input parameter values that are typical for nanofluid (water and SiO2 nanoparticles) droplet evaporation in atmospheric conditions. It is demonstrated that for these experiments 1≪0 which justifies the applicability of the linear heat conduction equation used for the analysis of this process. Small differences in the temperatures predicted by both non-linear and linear models lead to a much more noticeable difference in integral characteristics such as time before the start of the formation of the cenosphere when the mass fraction of nanoparticles at the droplet surface reaches about 40% 
336 |a Текстовый файл 
371 |a AM_Agreement 
461 1 |t International Journal of Heat and Mass Transfer  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 219  |v Article number 124880, 10 p.  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a spheroidal droplet 
610 1 |a heating 
610 1 |a evaporation 
610 1 |a mathematical model 
610 1 |a COMSOL multiphysics 
610 1 |a couples solution 
701 1 |a Antonov  |b D. V.  |c specialist in the field of heat and power engineering  |c Associate Professor, Research Engineer at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1996-  |g Dmitry Vladimirovich  |9 22322 
701 1 |a Shchepakina  |b E. A.  |g Elena Anatoljevna 
701 1 |a Sobolev  |b V. A.  |g Vladimir Aleksandrovich 
701 1 |a Starinskaya  |b E. M.  |g Elena Mikhaylovna 
701 1 |a Terekhov  |b V. V.  |g Vladimir Vladimirovich 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |9 15117 
701 1 |a Sazhin  |b S. S.  |c geophysicist  |c Leading researcher at Tomsk Polytechnic University, PhD in Physics and Mathematics  |f 1949-  |g Sergey Stepanovich  |y Томск  |7 ba  |8 eng  |9 88718 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197 
801 0 |a RU  |b 63413507  |c 20240528 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.ijheatmasstransfer.2023.124880  |z https://doi.org/10.1016/j.ijheatmasstransfer.2023.124880 
942 |c CR