A combined analytical/numerical approach to the modelling of the processes leading to puffing and micro-explosion in a composite multi-component fuel/water droplet

Bibliographic Details
Parent link:Atomization and Sprays.— .— Redding: Begell House Inc.
Vol. 34 - iss. 3.— 2024.— P. 31-51
Corporate Author: National Research Tomsk Polytechnic University
Other Authors: Antonov D. V. Dmitry Vladimirovich, Strizhak P. A. Pavel Alexandrovich, Shchepakina E. A. Elena Anatoljevna, Sobolev V. A. Vladimir Aleksandrovich, Sazhin S. S. Sergey Stepanovich
Summary:The previously developed analytical/numerical model for predicting heat transfer and component diffusion in composite multi-component droplets is adjusted for use in practical engineering applications related to the analysis of droplet heating and evaporation and the onset of puffing and micro-explosions in those droplets. This adjustment allowed us to gain new insights into the previously developed models of these processes. The focus of the analysis is on kerosene/water droplets. It is demonstrated that the number of terms in the series in the analytical solution to the heat transfer equation can be reduced to just one or two to ensure that the maximal error of the model prediction does not exceed 1%, unless we are interested in the processes at the very start of heating. At the same time, the minimal number of terms in the series in the analytical solution to the component diffusion equation should be at least seven to ensure that the errors of the prediction of the numerical code do not exceed 3%. It is shown that, to ensure that the analytical/numerical code predicts physically consistent results, the maximal absolute error of calculation of the eigenvalues based on the bisection method cannot exceed 10<sup>-7</sup>. It is shown that using these limiting values for each of these input parameters leads to about 50%-75% reduction in the CPU time required to obtain results close to those which were obtained using the nonoptimized version of the numerical code. The overall reduction in CPU time can be up to about 95%. The predictions of the adjusted analytical/numerical code are validated against in-house experimental data and data available in the literature.
Текстовый файл
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.1615/AtomizSpr.2024050582
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672640

MARC

LEADER 00000naa0a2200000 4500
001 672640
005 20241218112719.0
014 |2 sici 
090 |a 672640 
100 |a 20240521d2023 k||y0rusy50 ca 
101 1 |a eng  |c rus 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a a   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a A combined analytical/numerical approach to the modelling of the processes leading to puffing and micro-explosion in a composite multi-component fuel/water droplet  |f D. V. Antonov, P. A. Strizhak, E. A. Shchepakina [et al.]  |d Комбинированный аналитический / численный подход к моделированию процессов, приводящих к вздутию и микровзрыву в композитном многокомпонентном топливе /капле воды  |z rus 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
320 |a References: p. 31-51 (21 tit.) 
330 |a The previously developed analytical/numerical model for predicting heat transfer and component diffusion in composite multi-component droplets is adjusted for use in practical engineering applications related to the analysis of droplet heating and evaporation and the onset of puffing and micro-explosions in those droplets. This adjustment allowed us to gain new insights into the previously developed models of these processes. The focus of the analysis is on kerosene/water droplets. It is demonstrated that the number of terms in the series in the analytical solution to the heat transfer equation can be reduced to just one or two to ensure that the maximal error of the model prediction does not exceed 1%, unless we are interested in the processes at the very start of heating. At the same time, the minimal number of terms in the series in the analytical solution to the component diffusion equation should be at least seven to ensure that the errors of the prediction of the numerical code do not exceed 3%. It is shown that, to ensure that the analytical/numerical code predicts physically consistent results, the maximal absolute error of calculation of the eigenvalues based on the bisection method cannot exceed 10<sup>-7</sup>. It is shown that using these limiting values for each of these input parameters leads to about 50%-75% reduction in the CPU time required to obtain results close to those which were obtained using the nonoptimized version of the numerical code. The overall reduction in CPU time can be up to about 95%. The predictions of the adjusted analytical/numerical code are validated against in-house experimental data and data available in the literature. 
336 |a Текстовый файл 
461 1 |c Redding  |n Begell House Inc.  |t Atomization and Sprays 
463 1 |d 2024  |t Vol. 34 - iss. 3  |v P. 31-51 
610 1 |a multi-component composite droplet 
610 1 |a micro-explosion 
610 1 |a puffing 
610 1 |a component diffusion 
610 1 |a analytical/numerical model 
610 1 |a heating 
610 1 |a evaporation 
610 1 |a diffusion equation 
610 1 |a heat conduction 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
701 1 |a Antonov  |b D. V.  |c specialist in the field of heat and power engineering  |c Associate Professor, Research Engineer at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1996-  |g Dmitry Vladimirovich  |9 22322 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |9 15117 
701 1 |a Shchepakina   |b E. A.  |g Elena Anatoljevna 
701 1 |a Sobolev   |b V. A.  |g Vladimir Aleksandrovich 
701 1 |a Sazhin  |b S. S.  |c geophysicist  |c Leading researcher at Tomsk Polytechnic University, PhD in Physics and Mathematics  |f 1949-  |g Sergey Stepanovich  |y Томск  |7 ba  |8 eng  |9 88718 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197 
801 0 |a RU  |b 63413507  |c 20240521 
850 |a 63413507 
856 4 |u https://doi.org/10.1615/AtomizSpr.2024050582  |z https://doi.org/10.1615/AtomizSpr.2024050582 
942 |c CR