Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

Bibliographic Details
Parent link:Physica Scripta.— .— Bristol: IOP Publishing Ltd.
Vol. 99, No. 4.— 2024.— Article number 045228, 15 p.
Main Author: Kulagin A. E. Anton Evgenievich
Corporate Author: National Research Tomsk Polytechnic University
Other Authors: Shapovalov A. V. Aleksandr Vasilyevich
Summary:Title screen
We construct quasiparticles-like solutions to the one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) with a nonlocal nonlinearity using the method of semiclassically concentrated states in the weak diffusion approximation. Such solutions are of use for predicting the dynamics of population patterns using analytical or semi-analytical approach. The interaction of quasiparticles stems from nonlocal competitive losses in the FKPP model. We developed the formalism of our approach relying on ideas of the Maslov method. The construction of the asymptotic expansion of a solution to the original nonlinear evolution equation is based on solutions to an auxiliary dynamical system of ODEs. The asymptotic solutions for various specific cases corresponding to various spatial profiles of the reproduction rate and nonlocal competitive losses are studied within the framework of the approach proposed
Текстовый файл
AM_Agreement
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.1088/1402-4896/ad302c
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672159

MARC

LEADER 00000naa0a2200000 4500
001 672159
005 20240409115408.0
090 |a 672159 
100 |a 20240409d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation  |f A. E. Kulagin, A. V. Shapovalov 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 45 tit. 
330 |a We construct quasiparticles-like solutions to the one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) with a nonlocal nonlinearity using the method of semiclassically concentrated states in the weak diffusion approximation. Such solutions are of use for predicting the dynamics of population patterns using analytical or semi-analytical approach. The interaction of quasiparticles stems from nonlocal competitive losses in the FKPP model. We developed the formalism of our approach relying on ideas of the Maslov method. The construction of the asymptotic expansion of a solution to the original nonlinear evolution equation is based on solutions to an auxiliary dynamical system of ODEs. The asymptotic solutions for various specific cases corresponding to various spatial profiles of the reproduction rate and nonlocal competitive losses are studied within the framework of the approach proposed 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |c Bristol  |n IOP Publishing Ltd.  |t Physica Scripta 
463 1 |d 2024  |t Vol. 99, No. 4  |v Article number 045228, 15 p. 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a reduced graphene oxide 
610 1 |a thermoplastic polymers 
610 1 |a graphene polymer composites 
610 1 |a laser-induced polymer composites 
610 1 |a flexible electronics 
700 1 |a Kulagin  |b A. E.  |c mathematician  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1992-  |g Anton Evgenievich  |9 18885 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |9 15847 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197 
801 0 |a RU  |b 63413507  |c 20240409 
850 |a 63413507 
856 4 |u https://doi.org/10.1088/1402-4896/ad302c  |z https://doi.org/10.1088/1402-4896/ad302c 
942 |c CR