Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

Bibliographic Details
Parent link:Physica Scripta.— .— Bristol: IOP Publishing Ltd.
Vol. 99, No. 4.— 2024.— Article number 045228, 15 p.
Main Author: Kulagin A. E. Anton Evgenievich
Corporate Author: National Research Tomsk Polytechnic University
Other Authors: Shapovalov A. V. Aleksandr Vasilyevich
Summary:Title screen
We construct quasiparticles-like solutions to the one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) with a nonlocal nonlinearity using the method of semiclassically concentrated states in the weak diffusion approximation. Such solutions are of use for predicting the dynamics of population patterns using analytical or semi-analytical approach. The interaction of quasiparticles stems from nonlocal competitive losses in the FKPP model. We developed the formalism of our approach relying on ideas of the Maslov method. The construction of the asymptotic expansion of a solution to the original nonlinear evolution equation is based on solutions to an auxiliary dynamical system of ODEs. The asymptotic solutions for various specific cases corresponding to various spatial profiles of the reproduction rate and nonlocal competitive losses are studied within the framework of the approach proposed
Текстовый файл
AM_Agreement
Published: 2024
Subjects:
Online Access:https://doi.org/10.1088/1402-4896/ad302c
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672159
Description
Summary:Title screen
We construct quasiparticles-like solutions to the one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) with a nonlocal nonlinearity using the method of semiclassically concentrated states in the weak diffusion approximation. Such solutions are of use for predicting the dynamics of population patterns using analytical or semi-analytical approach. The interaction of quasiparticles stems from nonlocal competitive losses in the FKPP model. We developed the formalism of our approach relying on ideas of the Maslov method. The construction of the asymptotic expansion of a solution to the original nonlinear evolution equation is based on solutions to an auxiliary dynamical system of ODEs. The asymptotic solutions for various specific cases corresponding to various spatial profiles of the reproduction rate and nonlocal competitive losses are studied within the framework of the approach proposed
Текстовый файл
AM_Agreement
DOI:10.1088/1402-4896/ad302c