Universal Approach to Integrating Reduced Graphene Oxide into Polymer Electronics

Bibliographic Details
Parent link:Polymers.— .— Basel: MDPI AG
Vol. 15, iss. 24.— 2023.— Article number 4622, 19 p.
Other Authors: Abyzova E. G. Elena Gennadievna, Petrov I. S. Iljya Sergeevich, Bril I. I. Iljya Igorevich, Cheshev D. L. Dmitry Leonidovich, Ivanov A. A. Aleksey Alekseevich, Khomenko M. Maxim, Averkiev A. A. Andrey Alekseevich, Fatkullin M. I. Maksim Ilgizovich, Kogolev D. A. Dmitry Anatoljevich, Bolbasov E. N. Evgeny Nikolaevich, Matkovich A., Chen Dzhin Dzhu, Rodriguez (Rodriges) Contreras R. D. Raul David, Sheremet E. S. Evgeniya Sergeevna
Summary:Title screen
Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms—rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications
Текстовый файл
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.3390/polym15244622
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672154

MARC

LEADER 00000naa0a2200000 4500
001 672154
005 20250604164819.0
090 |a 672154 
100 |a 20240409d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Universal Approach to Integrating Reduced Graphene Oxide into Polymer Electronics  |f E. G. Abyzova, I. S. Petrov, I. I. Bril [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 77 tit. 
330 |a Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms—rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications 
336 |a Текстовый файл 
461 1 |t Polymers  |c Basel  |n MDPI AG 
463 1 |d 2023  |t Vol. 15, iss. 24  |v Article number 4622, 19 p. 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a reduced graphene oxide 
610 1 |a thermoplastic polymers 
610 1 |a graphene polymer composites 
610 1 |a laser-induced polymer composites 
610 1 |a flexible electronics 
701 1 |a Abyzova  |b E. G.  |c Specialist in the field of biotechnical technologies  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Elena Gennadievna  |9 22847 
701 1 |a Petrov  |b I. S.  |c physicist, specialist in the field of nuclear technologies  |c Junior Researcher of the Tomsk Polytechnic University  |f 1994-  |g Iljya Sergeevich  |9 22501 
701 1 |a Bril  |b I. I.  |c specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Iljya Igorevich  |9 88520 
701 1 |a Cheshev  |b D. L.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 2000-  |g Dmitry Leonidovich  |9 22924 
701 1 |a Ivanov  |b A. A.  |c specialist in the field of Electrophysics  |c engineer of Tomsk Polytechnic University  |f 1990-  |g Aleksey Alekseevich  |9 18840 
701 1 |a Khomenko  |b M.  |g Maxim 
701 1 |a Averkiev  |b A. A.  |c Specialist in the field of electronics  |c Research Engineer of Tomsk Polytechnic University  |f 1996-  |g Andrey Alekseevich  |9 22723 
701 1 |a Fatkullin  |b M. I.  |c chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Maksim Ilgizovich  |9 22844 
701 1 |a Kogolev  |b D. A.  |c Chemical engineer  |c Research Engineer of Tomsk Polytechnic University  |f 1998-  |g Dmitry Anatoljevich  |9 22691 
701 1 |a Bolbasov  |b E. N.  |c physicist  |c Senior Researcher at Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1981-  |g Evgeny Nikolaevich  |9 15103 
701 1 |a Matkovich  |b A. 
701 0 |a Chen Dzhin Dzhu 
701 1 |a Rodriguez (Rodriges) Contreras  |b R. D.  |c Venezuelan physicist, doctor of science  |c Professor of Tomsk Polytechnic University  |f 1982-  |g Raul David  |9 21179 
701 1 |a Sheremet  |b E. S.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1988-  |g Evgeniya Sergeevna  |9 21197 
801 0 |a RU  |b 63413507  |c 20240409 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/polym15244622  |z https://doi.org/10.3390/polym15244622 
942 |c CF