Consistent Lagrangians for irreducible interacting higher-spin fields with holonomic constraints

Bibliographic Details
Parent link:Physics of Particles and Nuclei.— : Springer Science+Business Media LLC., New York
Vol. 54, iss. 6.— 2023.— P. 1066-1071
Main Author: Buchbinder I. L. Iosif Lvovich
Corporate Author: Национальный исследовательский Томский политехнический университет
Other Authors: Reshetnyak А. А. Aleksandr Aleksandrovich
Summary:Title screen
We study the aspects of constructing the interactions for the higher spin fields in the framework of BRST approach. The main object of such an approach is BRST operator acting in the appropriate Fock space and building on the base of constraints that define the irreducible higher spin representations. In its turn, the constraints are divided into differential and purely algebraic or holonomic. The necessary and sufficient conditions to derive the consistent Lagrangian formulations for irreducible interacting higher-spin fields within approach with incomplete BRST operator, where the algebraic constraints are not included into definition of the BRST operator but imposed ad hoc on the field and gauge parameter vectors, are considered. It is shown that in addition to that such constraints should (anti)commute with the BRST operator and annihilate the fields and gauge parameters Fock space vectors, they must form the Abelian (super)algebra both with the BRST operator above and with operators of cubic, quartic and etc. vertices. Only under the above conditions, the formulations with complete and incomplete BRST charges turn out to be equivalent and yield to the same interaction vertices in terms of irreducible fields
AM_Agreement
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.1134/S1063779623060084
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672124

MARC

LEADER 00000nla0a2200000 4500
001 672124
005 20241014090448.0
090 |a 672124 
100 |a 20240408a2023 k||y0engy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Consistent Lagrangians for irreducible interacting higher-spin fields with holonomic constraints   |f I. L. Buchbinder, A. A. Reshetnyak 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 19 tit. 
330 |a We study the aspects of constructing the interactions for the higher spin fields in the framework of BRST approach. The main object of such an approach is BRST operator acting in the appropriate Fock space and building on the base of constraints that define the irreducible higher spin representations. In its turn, the constraints are divided into differential and purely algebraic or holonomic. The necessary and sufficient conditions to derive the consistent Lagrangian formulations for irreducible interacting higher-spin fields within approach with incomplete BRST operator, where the algebraic constraints are not included into definition of the BRST operator but imposed ad hoc on the field and gauge parameter vectors, are considered. It is shown that in addition to that such constraints should (anti)commute with the BRST operator and annihilate the fields and gauge parameters Fock space vectors, they must form the Abelian (super)algebra both with the BRST operator above and with operators of cubic, quartic and etc. vertices. Only under the above conditions, the formulations with complete and incomplete BRST charges turn out to be equivalent and yield to the same interaction vertices in terms of irreducible fields 
371 0 |a AM_Agreement 
461 1 |t Physics of Particles and Nuclei  |d New York  |n Springer Science+Business Media LLC. 
463 1 |t Vol. 54, iss. 6  |v P. 1066-1071  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a higher-spin field theory 
610 1 |a gauge theories 
610 1 |a field–antifield formalism 
700 1 |a Buchbinder  |b I. L.   |g Iosif Lvovich 
701 1 |a Reshetnyak  |b А. А.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1970-  |g Aleksandr Aleksandrovich  |y Tomsk  |9 88518 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |9 26305 
801 0 |a RU  |b 63413507  |c 20230408  |g RCR 
856 4 |u https://doi.org/10.1134/S1063779623060084  |z https://doi.org/10.1134/S1063779623060084 
942 |c CR