Effect of the MgO Addition on the Structure and Physical Properties of the High Entropy HfZrCeYO Fluorite Ceramics

Bibliographic Details
Parent link:Coatings
Vol. 13, iss. 5.— 2023.— [917, 8 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Zenkin S. P. Sergey Petrovich, Gaydaychuk A. V. Alexander Valerievich, Mitulinsky A. S. Aleksandr Sergeevich, Bulakh V. A. Vlada Aleksandrovna, Linnik S. A. Stepan Andreevich
Summary:Title screen
One of the most promising applications of high entropy ceramics is their use as high temperature protective materials. Due to the additional entropic stabilization of the crystal structure, four- and five-element high entropy ceramics exhibit enhanced thermal and mechanical properties. For these applications, one of the most promising high entropy protective oxides are ZrO2- and HfO2-based protective HEOs. In this article, we study the HfO2–ZrO2–Y2O3–CeO2 equimolar system with the addition of MgO as a fifth component. We found that the HfZrCeY(Mg)O system maintains a single FCC crystalline structure up to the MgO concentration = 31.9 mol.%. Additionally, we determined that an addition of MgO at the close-to-equimolar HfZrCeY(Mg)O composition enhances the thermal properties of HEO, but reduces the mechanical properties such as hardness and resistance to crack formation. The minimum weight loss at the heating from RT up to 1450 °C was measured for the close-to-equimolar HfZrCeY(Mg)O composition at 18.4 mol.% MgO. The hardness of such composition was around 18 GPa. Due to the combination of these properties, the synthesized coating can be used as a protective material for high temperature applications, such as the protection of turbine parts.
Language:English
Published: 2023
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/132552
https://doi.org/10.3390/coatings13050917
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669576

MARC

LEADER 00000naa0a2200000 4500
001 669576
005 20250917155306.0
035 |a (RuTPU)RU\TPU\network\40828 
035 |a RU\TPU\network\40496 
090 |a 669576 
100 |a 20230628d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of the MgO Addition on the Structure and Physical Properties of the High Entropy HfZrCeYO Fluorite Ceramics  |f S. P. Zenkin, A. V. Gaydaychuk, A. S. Mitulinsky [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 18 tit.] 
330 |a One of the most promising applications of high entropy ceramics is their use as high temperature protective materials. Due to the additional entropic stabilization of the crystal structure, four- and five-element high entropy ceramics exhibit enhanced thermal and mechanical properties. For these applications, one of the most promising high entropy protective oxides are ZrO2- and HfO2-based protective HEOs. In this article, we study the HfO2–ZrO2–Y2O3–CeO2 equimolar system with the addition of MgO as a fifth component. We found that the HfZrCeY(Mg)O system maintains a single FCC crystalline structure up to the MgO concentration = 31.9 mol.%. Additionally, we determined that an addition of MgO at the close-to-equimolar HfZrCeY(Mg)O composition enhances the thermal properties of HEO, but reduces the mechanical properties such as hardness and resistance to crack formation. The minimum weight loss at the heating from RT up to 1450 °C was measured for the close-to-equimolar HfZrCeY(Mg)O composition at 18.4 mol.% MgO. The hardness of such composition was around 18 GPa. Due to the combination of these properties, the synthesized coating can be used as a protective material for high temperature applications, such as the protection of turbine parts. 
461 |t Coatings 
463 |t Vol. 13, iss. 5  |v [917, 8 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a high entropy oxide 
610 1 |a magnetron sputtering 
610 1 |a thermal properties 
610 1 |a mechanical properties 
610 1 |a высокоэнтропийные оксиды 
610 1 |a магнетронное напыление 
610 1 |a тепловые свойства 
610 1 |a механические свойства 
701 1 |a Zenkin  |b S. P.  |c physicist  |c Researcher of Tomsk Polytechnic University  |f 1988-  |g Sergey Petrovich  |3 (RuTPU)RU\TPU\pers\41880 
701 1 |a Gaydaychuk  |b A. V.  |c physicist  |c Postgraduate, Engineer - Researcher of Tomsk Polytechnic University  |f 1984-  |g Alexander Valerievich  |3 (RuTPU)RU\TPU\pers\32876  |9 16724 
701 1 |a Mitulinsky  |b A. S.  |c electric power specialist  |c technician of Tomsk Polytechnic University  |f 1998-  |g Aleksandr Sergeevich  |3 (RuTPU)RU\TPU\pers\47113 
701 1 |a Bulakh  |b V. A.  |c chemist  |c Technician of Tomsk Polytechnic University  |f 2002-  |g Vlada Aleksandrovna  |3 (RuTPU)RU\TPU\pers\47560 
701 1 |a Linnik  |b S. A.  |c physicist  |c Engineer-Researcher of Tomsk Polytechnic University  |f 1985-  |g Stepan Andreevich  |3 (RuTPU)RU\TPU\pers\32877  |9 16725 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20230628  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/132552  |z http://earchive.tpu.ru/handle/11683/132552 
856 4 |u https://doi.org/10.3390/coatings13050917 
942 |c CF