Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering

Bibliographische Detailangaben
Parent link:Polymers
Vol. 14, iss. 23.— 2023.— [5254, 13 p. ]
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга
Weitere Verfasser: Demina T. S. Tatyana Sergeevna, Bolbasov E. N. Evgeny Nikolaevich, Peshkova M. A. Maria Aleksandrovna, Efremov Yu. M. Yuri Mikhailovich, Bikmulina P. Yu. Polina Yurievna, Birdibekova A. V. Aisylu Vakhitovna, Popyrina T. N. Tatyana Nikolaevna, Kosheleva N. V. Nastasia Vladimirovna, Tverdokhlebov S. I. Sergei Ivanovich, Timashev P. S. Peter, Akopova T. A. Tatyana
Zusammenfassung:Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell–cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.
Sprache:Englisch
Veröffentlicht: 2023
Schlagworte:
Online-Zugang:https://doi.org/10.3390/polym14235254
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669529

MARC

LEADER 00000naa0a2200000 4500
001 669529
005 20250924095655.0
035 |a (RuTPU)RU\TPU\network\40781 
035 |a RU\TPU\network\40485 
090 |a 669529 
100 |a 20230626d2023 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering  |f T. S. Demina, E. N. Bolbasov, M. A. Peshkova [et al.] 
203 |a Text  |c electronic 
320 |a [References: 42 tit.] 
330 |a Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell–cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology. 
461 |t Polymers 
463 |t Vol. 14, iss. 23  |v [5254, 13 p. ]  |d 2023 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a polylactide 
610 1 |a non-woven mats 
610 1 |a electrospinning 
610 1 |a tissue engineering 
610 1 |a solution blow spinning 
610 1 |a cell growth 
610 1 |a biopolymers 
610 1 |a полилактиды 
610 1 |a нетканое волокно 
610 1 |a электропрядение 
610 1 |a тканевая инженерия 
701 1 |a Demina  |b T. S.  |g Tatyana Sergeevna 
701 1 |a Bolbasov  |b E. N.  |c physicist  |c Senior Researcher at Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1981-  |g Evgeny Nikolaevich  |3 (RuTPU)RU\TPU\pers\30857  |9 15103 
701 1 |a Peshkova  |b M. A.  |g Maria Aleksandrovna 
701 1 |a Efremov  |b Yu. M.  |g Yuri Mikhailovich 
701 1 |a Bikmulina  |b P. Yu.  |g Polina Yurievna 
701 1 |a Birdibekova  |b A. V.  |g Aisylu Vakhitovna 
701 1 |a Popyrina  |b T. N.  |g Tatyana Nikolaevna 
701 1 |a Kosheleva  |b N. V.  |g Nastasia Vladimirovna 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855  |9 15101 
701 1 |a Timashev  |b P. S.  |g Peter 
701 1 |a Akopova  |b T. A.  |g Tatyana 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
801 2 |a RU  |b 63413507  |c 20230626  |g RCR 
856 4 |u https://doi.org/10.3390/polym14235254 
942 |c CF