Microstructure and magnetization study of Li and Li–Zn ferrites synthesized by an electron beam

Bibliographic Details
Parent link:Materials Chemistry and Physics
Vol. 302.— 2023.— [127722, 12 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Институт неразрушающего контроля Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников
Other Authors: Lysenko E. N. Elena Nikolaevna, Vlasov V. A. Vitaliy Anatolievich, Nikolaev E. V. Evgeny Vladimirovich, Surzhikov A. P. Anatoly Petrovich, Korobeynikov M. V. Mikhail Vasiljevich
Summary:Title screen
Lithium ferrites are widely used in high frequency electronic devices. The present work reports structural and magnetization analysis of lithium (Li0.5Fe2.5O4) and lithium-zinc (Li0.4Fe2.4Zn0.2O4) ferrites synthesized by electron beam heating (RT) of powdered and compacted samples. The synthesis was carried out at 600 and 750 °C for up to 120 min using 2.4 MeV electron beam generated by an ILU-6 pulsed electron accelerator. The characteristics of the samples synthesized by RT were compared with the ones of samples obtained by traditional thermal heating under the same temperature and time conditions. From XRD and thermomagnetometric analyses, α-Li0.5Fe2.5O4 ordered spinel phase and Li0.5(1−x)Fe2.5−0.5xZnxO4 ferrite phase with different zinc substitution were formed from Fe2O3/Li2CO3 and Fe2O3/Li2CO3/ZnO reagents, respectively. RT synthesis significantly increases the rate of interaction between the initial powders and, as a consequence, the rate of ferrite phase formation. In this case, lithium-containing ferrites can be successfully achieved from compacted powders at 750 °C, which is lower than the temperature of synthesis in conventional thermal heating. The average crystallite sizes calculated from the XRD and BET analyses were 114 nm for Li, 120 nm for Li-Zn ferrites and 142 for Li, 150 nm for Li-Zn, respectively. The specific saturation magnetization and Curie temperature were estimated and are 60 emu/g for Li, 70 emu/g for Li-Zn ferrites and 632 °C for Li, 492 °C for Li-Zn ferrites, respectively. The data obtained in this work are of considerable interest for the creation of a technology for producing ferrites at low synthesis temperatures.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.1016/j.matchemphys.2023.127722
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669496

MARC

LEADER 00000naa0a2200000 4500
001 669496
005 20250210161458.0
035 |a (RuTPU)RU\TPU\network\40736 
035 |a RU\TPU\network\40640 
090 |a 669496 
100 |a 20230522d2023 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Microstructure and magnetization study of Li and Li–Zn ferrites synthesized by an electron beam  |f E. N. Lysenko, V. A. Vlasov, E. V. Nikolaev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 52 tit.] 
330 |a Lithium ferrites are widely used in high frequency electronic devices. The present work reports structural and magnetization analysis of lithium (Li0.5Fe2.5O4) and lithium-zinc (Li0.4Fe2.4Zn0.2O4) ferrites synthesized by electron beam heating (RT) of powdered and compacted samples. The synthesis was carried out at 600 and 750 °C for up to 120 min using 2.4 MeV electron beam generated by an ILU-6 pulsed electron accelerator. The characteristics of the samples synthesized by RT were compared with the ones of samples obtained by traditional thermal heating under the same temperature and time conditions. From XRD and thermomagnetometric analyses, α-Li0.5Fe2.5O4 ordered spinel phase and Li0.5(1−x)Fe2.5−0.5xZnxO4 ferrite phase with different zinc substitution were formed from Fe2O3/Li2CO3 and Fe2O3/Li2CO3/ZnO reagents, respectively. RT synthesis significantly increases the rate of interaction between the initial powders and, as a consequence, the rate of ferrite phase formation. In this case, lithium-containing ferrites can be successfully achieved from compacted powders at 750 °C, which is lower than the temperature of synthesis in conventional thermal heating. The average crystallite sizes calculated from the XRD and BET analyses were 114 nm for Li, 120 nm for Li-Zn ferrites and 142 for Li, 150 nm for Li-Zn, respectively. The specific saturation magnetization and Curie temperature were estimated and are 60 emu/g for Li, 70 emu/g for Li-Zn ferrites and 632 °C for Li, 492 °C for Li-Zn ferrites, respectively. The data obtained in this work are of considerable interest for the creation of a technology for producing ferrites at low synthesis temperatures. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Materials Chemistry and Physics 
463 |t Vol. 302  |v [127722, 12 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a литиевые ферриты 
610 1 |a электронно-лучевое нагревание 
701 1 |a Lysenko  |b E. N.  |c Specialist in the field of electrical engineering  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1972-  |g Elena Nikolaevna  |3 (RuTPU)RU\TPU\pers\32050  |9 16097 
701 1 |a Vlasov  |b V. A.  |c Physicist  |c Senior researcher of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1975-  |g Vitaliy Anatolievich  |3 (RuTPU)RU\TPU\pers\31405  |9 15577 
701 1 |a Nikolaev  |b E. V.  |c specialist in the field of electrical engineering  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Evgeny Vladimirovich  |3 (RuTPU)RU\TPU\pers\34529  |9 17910 
701 1 |a Surzhikov  |b A. P.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences (DSc)  |f 1951-  |g Anatoly Petrovich  |3 (RuTPU)RU\TPU\pers\30237  |9 14617 
701 1 |a Korobeynikov  |b M. V.  |g Mikhail Vasiljevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Институт неразрушающего контроля  |b Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников  |3 (RuTPU)RU\TPU\col\19033 
801 2 |a RU  |b 63413507  |c 20230522  |g RCR 
856 4 |u https://doi.org/10.1016/j.matchemphys.2023.127722 
942 |c CF