Technological Aspects of Lithium-Titanium Ferrite Synthesis by Electron-Beam Heating

Dades bibliogràfiques
Parent link:Materials
Vol. 16, iss. 2.— 2023.— [604, 14 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Институт неразрушающего контроля Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников
Altres autors: Lysenko E. N. Elena Nikolaevna, Vlasov V. A. Vitaliy Anatolievich, Nikolaev E. V. Evgeny Vladimirovich, Surzhikov A. P. Anatoly Petrovich, Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Sumari:Title screen
Solid-phase synthesis of lithium-titanium ferrite by electron-beam heating of a Fe2O3-Li2CO3-TiO2 initial reagents mixture with different history (powder, compact, mechanically activated mixture) was studied using X-ray diffraction, thermomagnetometric and specific saturation magnetization analyses. Ferrite was synthesized using an ILU-6 pulsed electron accelerator; it generated electrons with electron energy of 2.4 MeV to heat samples to temperatures of 600 and 750 °C. The isothermal holding time upon reaching the synthesis temperature was 0-120 min. The efficiency of ferrite synthesis by electron-beam heating was evaluated via comparison of the characteristics of the obtained samples with those synthesized by conventional ceramic technology under similar temperature-time conditions. It was found that the rate of ferrite formation depends on the heating method, temperature, synthesis time, density, and activity of the initial mixture. It was shown that sample compaction provides the preferential formation of unsubstituted lithium ferrite of Li0.5Fe2.5O4 composition with a Curie temperature of at ca. 630 °C in both synthesis methods. High-energy electron-beam heating of the mechanically activated mixture significantly accelerates synthesis of Li0.6Fe2.2Ti0.2O4 substituted ferrite, for which the Curie temperature and specific saturation magnetization were recorded as 534 °C and 50 emu/g, respectively. Therefore, LiTi ferrites can be obtained at a lower temperature (750 °C) and with a shorter synthesis time (120 min) compared to traditional ceramic technology.
Idioma:anglès
Publicat: 2023
Matèries:
Accés en línia:http://earchive.tpu.ru/handle/11683/132549
https://doi.org/10.3390/ma16020604
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669495

MARC

LEADER 00000naa0a2200000 4500
001 669495
005 20250917155050.0
035 |a (RuTPU)RU\TPU\network\40735 
035 |a RU\TPU\network\40734 
090 |a 669495 
100 |a 20230522d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Technological Aspects of Lithium-Titanium Ferrite Synthesis by Electron-Beam Heating  |f E. N. Lysenko, V. A. Vlasov, E. V. Nikolaev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 49 tit.] 
330 |a Solid-phase synthesis of lithium-titanium ferrite by electron-beam heating of a Fe2O3-Li2CO3-TiO2 initial reagents mixture with different history (powder, compact, mechanically activated mixture) was studied using X-ray diffraction, thermomagnetometric and specific saturation magnetization analyses. Ferrite was synthesized using an ILU-6 pulsed electron accelerator; it generated electrons with electron energy of 2.4 MeV to heat samples to temperatures of 600 and 750 °C. The isothermal holding time upon reaching the synthesis temperature was 0-120 min. The efficiency of ferrite synthesis by electron-beam heating was evaluated via comparison of the characteristics of the obtained samples with those synthesized by conventional ceramic technology under similar temperature-time conditions. It was found that the rate of ferrite formation depends on the heating method, temperature, synthesis time, density, and activity of the initial mixture. It was shown that sample compaction provides the preferential formation of unsubstituted lithium ferrite of Li0.5Fe2.5O4 composition with a Curie temperature of at ca. 630 °C in both synthesis methods. High-energy electron-beam heating of the mechanically activated mixture significantly accelerates synthesis of Li0.6Fe2.2Ti0.2O4 substituted ferrite, for which the Curie temperature and specific saturation magnetization were recorded as 534 °C and 50 emu/g, respectively. Therefore, LiTi ferrites can be obtained at a lower temperature (750 °C) and with a shorter synthesis time (120 min) compared to traditional ceramic technology. 
461 |t Materials 
463 |t Vol. 16, iss. 2  |v [604, 14 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a lithium-titanium ferrite 
610 1 |a X-ray diffraction analysis 
610 1 |a mechanical activation 
610 1 |a radiation-thermal heating 
610 1 |a electron beam 
610 1 |a литий-титановые ферриты 
610 1 |a рентгеноструктурный анализ 
610 1 |a механическая активация 
610 1 |a радиационно-термический нагрев 
610 1 |a электронные лучи 
701 1 |a Lysenko  |b E. N.  |c Specialist in the field of electrical engineering  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1972-  |g Elena Nikolaevna  |3 (RuTPU)RU\TPU\pers\32050  |9 16097 
701 1 |a Vlasov  |b V. A.  |c Physicist  |c Senior researcher of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1975-  |g Vitaliy Anatolievich  |3 (RuTPU)RU\TPU\pers\31405  |9 15577 
701 1 |a Nikolaev  |b E. V.  |c specialist in the field of electrical engineering  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Evgeny Vladimirovich  |3 (RuTPU)RU\TPU\pers\34529  |9 17910 
701 1 |a Surzhikov  |b A. P.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences (DSc)  |f 1951-  |g Anatoly Petrovich  |3 (RuTPU)RU\TPU\pers\30237  |9 14617 
701 1 |a Gyngazov (Ghyngazov)  |b S. A.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1958-  |g Sergey Anatolievich  |3 (RuTPU)RU\TPU\pers\33279  |9 17024 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Институт неразрушающего контроля  |b Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников  |3 (RuTPU)RU\TPU\col\19033 
801 2 |a RU  |b 63413507  |c 20230522  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/132549  |z http://earchive.tpu.ru/handle/11683/132549 
856 4 |u https://doi.org/10.3390/ma16020604 
942 |c CF