Formation of Ag-Fe Bimetallic Nano-Species on Mordenite Depending on the Initial Ratio of Components
| Parent link: | Materials Vol. 16, iss. 8.— 2023.— [3026, 17 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , , |
| Summary: | Title screen The formation and properties of silver and iron nanoscale components in the Ag-Fe bimetallic system deposited on mordenite depend on several parameters during their preparation. Previously, it was shown that an important condition for optimizing nano-center properties in a bimetallic catalyst is to change the order of sequential deposition of components; the order “first Ag+, then Fe2+” was chosen as optimal. In this work, the influence of exact Ag/Fe atomic proportion on the system’s physicochemical properties was studied. This ratio has been confirmed to affect the stoichiometry of the reduction–oxidation processes involving Ag+ and Fe2+, as shown by XRD, DR UV-Vis, XPS, and XAFS data, while HRTEM, SBET and TPD-NH3 show little change. However, it was found the correlation between the occurrence and amount of the Fe3+ ions incorporated into the zeolite’s framework and the experimentally determined catalytic activities towards the model de-NOx reaction along the series of nanomaterials elucidated in this present paper. |
| Published: |
2023
|
| Subjects: | |
| Online Access: | https://doi.org/10.3390/ma16083026 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669456 |
| Summary: | Title screen The formation and properties of silver and iron nanoscale components in the Ag-Fe bimetallic system deposited on mordenite depend on several parameters during their preparation. Previously, it was shown that an important condition for optimizing nano-center properties in a bimetallic catalyst is to change the order of sequential deposition of components; the order “first Ag+, then Fe2+” was chosen as optimal. In this work, the influence of exact Ag/Fe atomic proportion on the system’s physicochemical properties was studied. This ratio has been confirmed to affect the stoichiometry of the reduction–oxidation processes involving Ag+ and Fe2+, as shown by XRD, DR UV-Vis, XPS, and XAFS data, while HRTEM, SBET and TPD-NH3 show little change. However, it was found the correlation between the occurrence and amount of the Fe3+ ions incorporated into the zeolite’s framework and the experimentally determined catalytic activities towards the model de-NOx reaction along the series of nanomaterials elucidated in this present paper. |
|---|---|
| DOI: | 10.3390/ma16083026 |