Three-dimensional simulation of full conduction-convection-radiation coupling with high Rayleigh numbers

Podrobná bibliografie
Parent link:International Journal of Thermal Sciences
Vol. 184.— 2023.— [107958, 12 p.]
Hlavní autor: Nee A. E. Aleksandr Eduardovich
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Další autoři: Kim B. Bubryur, Chamkha A. J. Ali
Shrnutí:Title screen
The present research is focused on numerical analysis of heat transfer and fluid flow patterns when taking into account conduction, natural convection and surface thermal radiation under three-dimensional problem formulation. A hybrid mathematical model coupling the mesoscopic lattice Boltzmann equations with the macroscopic energy equation is built. The governing equations are solved in MATLAB. An in-house code developed in this work can be both run on central processing units and graphics processing units with almost no changes. Multiparameter analysis was performed when varying the Rayleigh number (Ra), surface emissivity, Biot number, conduction-radiation number, thermophysical properties and thickness of the solid walls. During numerical simulation, it was found that the vertical walls emissivity can be used as a tool to control thermal and flow behavior. In fact, three modes of heat transfer such as thermal stratification, thermal fluctuations and thermal plume were revealed when Ra = 108. With further increase of the Rayleigh number thermal and flow fluctuations were observed at the bottom half of the cavity. A significant discrepancy in results was observed between the 2D and 3D models when taking into account surface radiation. Finally, correlations for mean convective, radiative and effective Nusselt numbers were proposed.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2023
Témata:
On-line přístup:https://doi.org/10.1016/j.ijthermalsci.2022.107958
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669371

MARC

LEADER 00000naa0a2200000 4500
001 669371
005 20250224163949.0
035 |a (RuTPU)RU\TPU\network\40611 
035 |a RU\TPU\network\39667 
090 |a 669371 
100 |a 20230410d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Three-dimensional simulation of full conduction-convection-radiation coupling with high Rayleigh numbers  |f A. E. Nee, B. Kim, A. J. Chamkha 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 19 tit.] 
330 |a The present research is focused on numerical analysis of heat transfer and fluid flow patterns when taking into account conduction, natural convection and surface thermal radiation under three-dimensional problem formulation. A hybrid mathematical model coupling the mesoscopic lattice Boltzmann equations with the macroscopic energy equation is built. The governing equations are solved in MATLAB. An in-house code developed in this work can be both run on central processing units and graphics processing units with almost no changes. Multiparameter analysis was performed when varying the Rayleigh number (Ra), surface emissivity, Biot number, conduction-radiation number, thermophysical properties and thickness of the solid walls. During numerical simulation, it was found that the vertical walls emissivity can be used as a tool to control thermal and flow behavior. In fact, three modes of heat transfer such as thermal stratification, thermal fluctuations and thermal plume were revealed when Ra = 108. With further increase of the Rayleigh number thermal and flow fluctuations were observed at the bottom half of the cavity. A significant discrepancy in results was observed between the 2D and 3D models when taking into account surface radiation. Finally, correlations for mean convective, radiative and effective Nusselt numbers were proposed. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |t International Journal of Thermal Sciences 
463 1 |t Vol. 184  |v [107958, 12 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a GPU 
610 1 |a hybrid LBM 
610 1 |a natural convection 
610 1 |a conjugate heat transfer 
610 1 |a surface radiation 
610 1 |a графические процессоры 
610 1 |a конвекция 
610 1 |a сопряженный теплообмен 
700 1 |a Nee  |b A. E.  |c specialist in the field of thermal engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences  |f 1990-  |g Aleksandr Eduardovich  |3 (RuTPU)RU\TPU\pers\35708  |9 18868 
701 1 |a Kim  |b B.  |g Bubryur 
701 1 |a Chamkha  |b A. J.  |g Ali 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
801 0 |a RU  |b 63413507  |c 20230410  |g RCR 
856 4 |u https://doi.org/10.1016/j.ijthermalsci.2022.107958 
942 |c CF