Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide

Bibliografske podrobnosti
Parent link:Advanced Healthcare Materials
Vol. 12, iss. 8.— 2022.— [2201726, 18 p.]
Korporativna značnica: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Международный научно-исследовательский центр "Пьезо- и магнитоэлектрические материалы"
Drugi avtorji: Chernozem R. V. Roman Viktorovich, Pary (Pariy) I. O. Igor Olegovich, Surmeneva M. A. Maria Alexandrovna, Shvartsman V. V. Vladimir, Planckaert G. Guillaume, Verduijn J. Joost, Ghysels S. Stef, Abalymov A. A., Parakhonskiy B. V. Bogdan, Gracey E. Eric, Goncalves A. Amanda, Mathur S. Sanjay, Ronsse F. Frederik, Depla D., Lupascu D. C. Doru
Izvleček:Title screen
This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
Режим доступа: по договору с организацией-держателем ресурса
Izdano: 2022
Teme:
Online dostop:https://doi.org/10.1002/adhm.202201726
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669366

MARC

LEADER 00000naa0a2200000 4500
001 669366
005 20250826102408.0
035 |a (RuTPU)RU\TPU\network\40606 
035 |a RU\TPU\network\38198 
090 |a 669366 
100 |a 20230403d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide  |f R. V. Chernozem, I. O. Pary (Pariy), M. A. Surmeneva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Advanced Healthcare Materials 
463 |t Vol. 12, iss. 8  |v [2201726, 18 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a исследования 
610 1 |a матриксы 
610 1 |a оксид графена 
610 1 |a биодеградация 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Pary (Pariy)  |b I. O.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1995-  |g Igor Olegovich  |3 (RuTPU)RU\TPU\pers\45219 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894 
701 1 |a Shvartsman  |b V. V.  |g Vladimir 
701 1 |a Planckaert  |b G.  |g Guillaume 
701 1 |a Verduijn  |b J.  |g Joost 
701 1 |a Ghysels  |b S.  |g Stef 
701 1 |a Abalymov  |b A. A. 
701 1 |a Parakhonskiy  |b B. V.  |g Bogdan 
701 1 |a Gracey  |b E.  |g Eric 
701 1 |a Goncalves  |b A.  |g Amanda 
701 1 |a Mathur  |b S.  |g Sanjay 
701 1 |a Ronsse  |b F.  |g Frederik 
701 1 |a Depla  |b D. 
701 1 |a Lupascu  |b D. C.  |g Doru 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |b Исследовательская школа химических и биомедицинских технологий  |b Международный научно-исследовательский центр "Пьезо- и магнитоэлектрические материалы"  |9 26305 
801 0 |a RU  |b 63413507  |c 20230403  |g RCR 
856 4 |u https://doi.org/10.1002/adhm.202201726 
942 |c CF