Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide
| Parent link: | Advanced Healthcare Materials Vol. 12, iss. 8.— 2022.— [2201726, 18 p.] |
|---|---|
| Korporativna značnica: | |
| Drugi avtorji: | , , , , , , , , , , , , , , |
| Izvleček: | Title screen This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications. Режим доступа: по договору с организацией-держателем ресурса |
| Izdano: |
2022
|
| Teme: | |
| Online dostop: | https://doi.org/10.1002/adhm.202201726 |
| Format: | Elektronski Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669366 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 669366 | ||
| 005 | 20250826102408.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\40606 | ||
| 035 | |a RU\TPU\network\38198 | ||
| 090 | |a 669366 | ||
| 100 | |a 20230403d2022 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide |f R. V. Chernozem, I. O. Pary (Pariy), M. A. Surmeneva [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Advanced Healthcare Materials | ||
| 463 | |t Vol. 12, iss. 8 |v [2201726, 18 p.] |d 2022 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a исследования | |
| 610 | 1 | |a матриксы | |
| 610 | 1 | |a оксид графена | |
| 610 | 1 | |a биодеградация | |
| 701 | 1 | |a Chernozem |b R. V. |c physicist |c Associate Professor of Tomsk Polytechnic University |f 1992- |g Roman Viktorovich |3 (RuTPU)RU\TPU\pers\36450 |9 19499 | |
| 701 | 1 | |a Pary (Pariy) |b I. O. |c physicist |c engineer of Tomsk Polytechnic University |f 1995- |g Igor Olegovich |3 (RuTPU)RU\TPU\pers\45219 | |
| 701 | 1 | |a Surmeneva |b M. A. |c specialist in the field of material science |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist |f 1984- |g Maria Alexandrovna |3 (RuTPU)RU\TPU\pers\31894 | |
| 701 | 1 | |a Shvartsman |b V. V. |g Vladimir | |
| 701 | 1 | |a Planckaert |b G. |g Guillaume | |
| 701 | 1 | |a Verduijn |b J. |g Joost | |
| 701 | 1 | |a Ghysels |b S. |g Stef | |
| 701 | 1 | |a Abalymov |b A. A. | |
| 701 | 1 | |a Parakhonskiy |b B. V. |g Bogdan | |
| 701 | 1 | |a Gracey |b E. |g Eric | |
| 701 | 1 | |a Goncalves |b A. |g Amanda | |
| 701 | 1 | |a Mathur |b S. |g Sanjay | |
| 701 | 1 | |a Ronsse |b F. |g Frederik | |
| 701 | 1 | |a Depla |b D. | |
| 701 | 1 | |a Lupascu |b D. C. |g Doru | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |c (2009- ) |b Исследовательская школа химических и биомедицинских технологий |b Международный научно-исследовательский центр "Пьезо- и магнитоэлектрические материалы" |9 26305 |
| 801 | 0 | |a RU |b 63413507 |c 20230403 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1002/adhm.202201726 | |
| 942 | |c CF | ||