Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium

書誌詳細
Parent link:Pharmaceutics
Vol. 15, iss. 3.— 2023.— [939, 22 p.]
団体著者: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга
その他の著者: Badaraev A. D. Arsalan Dorzhievich, Lerner M. I. Marat Izrailyevich, Bakina O. V. Olga Vladimirovna, Sidelev D. V. Dmitry Vladimirovich, Tran Tuan Hoang, Krinitsyn M. G. Maksim Germanovich, Malashicheva A. B. Anna, Cherempey E. G. Elena, Slepchenko G. B. Galina Borisovna, Kozelskaya A. I. Anna Ivanovna, Rutkowski S. Sven, Tverdokhlebov S. I. Sergei Ivanovich
要約:Title screen
Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties’ improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.
言語:英語
出版事項: 2023
主題:
オンライン・アクセス:http://earchive.tpu.ru/handle/11683/132651
https://doi.org/10.3390/pharmaceutics15030939
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669343

MARC

LEADER 00000naa0a2200000 4500
001 669343
005 20260210071611.0
035 |a (RuTPU)RU\TPU\network\40583 
035 |a RU\TPU\network\38976 
090 |a 669343 
100 |a 20230327d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium  |f A. D. Badaraev, M. I. Lerner, O. V. Bakina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 89 tit.] 
330 |a Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties’ improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures. 
461 |t Pharmaceutics 
463 |t Vol. 15, iss. 3  |v [939, 22 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a electrospinning 
610 1 |a PLGA scaffolds 
610 1 |a pulsed DC magnetron co-sputtering 
610 1 |a copper-titanium thin film 
610 1 |a surface modification 
610 1 |a antibacterial activity 
610 1 |a cytotoxicity 
610 1 |a электропрядение 
610 1 |a импульсное магнетронное распыление 
610 1 |a тонкие пленки 
610 1 |a антибактериальная активность 
610 1 |a цитотоксичность 
701 1 |a Badaraev  |b A. D.  |c Physicist  |c Engineer of Tomsk Polytechnic University  |f 1995-  |g Arsalan Dorzhievich  |3 (RuTPU)RU\TPU\pers\46819  |9 22441 
701 1 |a Lerner  |b M. I.  |c specialist in the field of mechanical engineering  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1956-  |g Marat Izrailyevich  |3 (RuTPU)RU\TPU\pers\31423  |9 15587 
701 1 |a Bakina  |b O. V.  |c specialist in the field of medical technology  |c researcher of Tomsk Polytechnic University  |f 1979-  |g Olga Vladimirovna  |3 (RuTPU)RU\TPU\pers\34696 
701 1 |a Sidelev  |b D. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Dmitry Vladimirovich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\34524  |9 17905 
701 0 |a Tran Tuan Hoang  |c specialist in the field of nuclear technologies  |c engineer of Tomsk Polytechnic University  |f 1993-  |3 (RuTPU)RU\TPU\pers\47572 
701 1 |a Krinitsyn  |b M. G.  |c specialist in the field of mechanical engineering  |c engineer of Tomsk Polytechnic University  |f 1992-  |g Maksim Germanovich  |3 (RuTPU)RU\TPU\pers\37439 
701 1 |a Malashicheva  |b A. B.  |g Anna 
701 1 |a Cherempey  |b E. G.  |g Elena 
701 1 |a Slepchenko  |b G. B.  |c Chemist  |c Professor of Tomsk Polytechnic University, Doctor of chemical sciences  |f 1956-  |g Galina Borisovna  |3 (RuTPU)RU\TPU\pers\33018  |9 16858 
701 1 |a Kozelskaya  |b A. I.  |c physicist  |c Researcher at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1985-  |g Anna Ivanovna  |3 (RuTPU)RU\TPU\pers\39663  |9 21044 
701 1 |a Rutkowski  |b S.  |c chemist  |c Research Engineer, Tomsk Polytechnic University, Ph.D  |f 1981-  |g Sven  |3 (RuTPU)RU\TPU\pers\46773  |9 22409 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
801 0 |a RU  |b 63413507  |c 20230517  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/132651  |z http://earchive.tpu.ru/handle/11683/132651 
856 4 |u https://doi.org/10.3390/pharmaceutics15030939 
942 |c CF