Zircon Concentrate Enrichment by Dry Magnetic Separation and Centrifugal Air Separation

Bibliographic Details
Parent link:Minerals
Vol. 13, iss. 3.— 2023.— [397, 50 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение ядерно-топливного цикла
Other Authors: Sachkov V. I. Viktor Ivanovich, Nefedov R. A. Roman Andreevich, Medvedev R. O. Rodion Olegovych, Amelichkin I. V. Ivan Vyacheslavovich, Sachkova A. S. Anna Sergeevna, Shcherbakov P. S. Pavel Sergeevich, Solovyev V. S. Vladislav Sergeevich, Leonov D. I. Daniil Igorevich, Biryukov D. A. Danil Aleksandrovich
Summary:Title screen
The possibility of enrichment and radioactivity reduction of zirconium concentrate obtained at the Obukhovsky mining and processing plant, located in the North Kazakhstan region, was investigated. The zircon concentrate was enriched and deactivated by dry magnetic separation and centrifugal air separation. The elements distribution over the grain surface of the obtained fractions was studied and the particle size distribution was determined by energy dispersive X-ray spectroscopy. The characteristics of the initial zircon concentrate were determined. The average particle size was 70 µm, the bulk density was 2.21 g/cm3, the true density was 4.05 g/cm3, the activity was 10.3 ± 0.6 kBq/kg, and the ZrO2 content was 44.85 wt.%. Dry magnetic separation was carried out at a magnetic induction value of 1.3 T in the separator working area and a feed rate of 5 g/min. Centrifugal air separation was carried out using a rotary classifier at rotor speeds of 3000, 980, and 600 rpm, consuming 2000 Nm3 of air per hour and a concentrate flow of 20 kg/h. The scheme of zircon concentrate processing to produce three final products was proposed. The first is the zircon concentrate having a low activity (ZrO2 content = 55.4 wt.%, P = 5.8 ± 0.6 kBq/kg). The second is the titanium-containing fraction having a low zirconium content (ZrO2 content = 17.7 wt.%, P = 14.2 ± 0.6 kBq/kg). The third is the concentrate having a considerable zirconium content and high activity (ZrO2 content = 23.5 wt.%, P = 12.8 ± 0.6 kBq/kg).
Published: 2023
Subjects:
Online Access:https://doi.org/10.3390/min13030397
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669342

MARC

LEADER 00000naa0a2200000 4500
001 669342
005 20250212161242.0
035 |a (RuTPU)RU\TPU\network\40582 
035 |a RU\TPU\network\40000 
090 |a 669342 
100 |a 20230327a2023 k y0engy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Zircon Concentrate Enrichment by Dry Magnetic Separation and Centrifugal Air Separation  |f V. I. Sachkov, R. A. Nefedov, R. O. Medvedev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 37 tit.] 
330 |a The possibility of enrichment and radioactivity reduction of zirconium concentrate obtained at the Obukhovsky mining and processing plant, located in the North Kazakhstan region, was investigated. The zircon concentrate was enriched and deactivated by dry magnetic separation and centrifugal air separation. The elements distribution over the grain surface of the obtained fractions was studied and the particle size distribution was determined by energy dispersive X-ray spectroscopy. The characteristics of the initial zircon concentrate were determined. The average particle size was 70 µm, the bulk density was 2.21 g/cm3, the true density was 4.05 g/cm3, the activity was 10.3 ± 0.6 kBq/kg, and the ZrO2 content was 44.85 wt.%. Dry magnetic separation was carried out at a magnetic induction value of 1.3 T in the separator working area and a feed rate of 5 g/min. Centrifugal air separation was carried out using a rotary classifier at rotor speeds of 3000, 980, and 600 rpm, consuming 2000 Nm3 of air per hour and a concentrate flow of 20 kg/h. The scheme of zircon concentrate processing to produce three final products was proposed. The first is the zircon concentrate having a low activity (ZrO2 content = 55.4 wt.%, P = 5.8 ± 0.6 kBq/kg). The second is the titanium-containing fraction having a low zirconium content (ZrO2 content = 17.7 wt.%, P = 14.2 ± 0.6 kBq/kg). The third is the concentrate having a considerable zirconium content and high activity (ZrO2 content = 23.5 wt.%, P = 12.8 ± 0.6 kBq/kg). 
461 |t Minerals 
463 |t Vol. 13, iss. 3  |v [397, 50 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a zirconium concentrate 
610 1 |a enrichment 
610 1 |a activity reduction 
610 1 |a dry magnetic separation 
610 1 |a centrifugal air separation 
610 1 |a концентраты 
610 1 |a цирконий 
610 1 |a обогащение 
610 1 |a снижение 
610 1 |a активность 
610 1 |a сухая сепарация 
610 1 |a магнитная сепарация 
701 1 |a Sachkov  |b V. I.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1978-  |g Viktor Ivanovich  |3 (RuTPU)RU\TPU\pers\34320 
701 1 |a Nefedov  |b R. A.  |g Roman Andreevich 
701 1 |a Medvedev  |b R. O.  |g Rodion Olegovych 
701 1 |a Amelichkin  |b I. V.  |g Ivan Vyacheslavovich 
701 1 |a Sachkova  |b A. S.  |c biologist  |c Associate Professor of Tomsk Polytechnic University, candidate of biological sciences  |f 1986-  |g Anna Sergeevna  |3 (RuTPU)RU\TPU\pers\36753  |9 19792 
701 1 |a Shcherbakov  |b P. S.  |g Pavel Sergeevich 
701 1 |a Solovyev  |b V. S.  |g Vladislav Sergeevich 
701 1 |a Leonov  |b D. I.  |g Daniil Igorevich 
701 1 |a Biryukov  |b D. A.  |g Danil Aleksandrovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение ядерно-топливного цикла  |3 (RuTPU)RU\TPU\col\23554 
801 0 |a RU  |b 63413507  |c 20230327  |g RCR 
856 4 |u https://doi.org/10.3390/min13030397 
942 |c CF