Co-combustion of methane hydrate and conventional fuels

Dades bibliogràfiques
Parent link:Fuel
Vol. 344.— 2023.— [128046, 13 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет Энергетический институт Лаборатория моделирования процессов тепломассопереноса
Altres autors: Gaydukova O. S. Olga Sergeevna, Dorokhov V. V. Vadim Valerjevich, Misyura S. Ya. Sergey Yakovlevich, Morozov V. S. Vasiliy Sergeevich, Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Sumari:Title screen
This paper presents the experimental data on the co-combustion of methane hydrate powder with conventional fuels: gasoline, kerosene, Diesel fuel, coal, and coal slime. For the experiments we used a laboratory-scale combustion chamber based on an induction system on the walls and a spark ignition system. Fuel ignition delay times were measured during separate and simultaneous supply of fuel components. It was found that the combustion of slow-burning fuels can be intensified by injecting methane hydrate granules. Liquid fuels with high concentrations of light fractions can be used to intensify the combustion of methane hydrate at relatively low temperatures in the combustion chamber. After recording the concentrations of the main components of combustion products, we rationalized the environmental benefits of gas hydrates used as the primary and secondary fuel components. The relative efficiency coefficients were calculated for fuels in terms of their environmental, economic, and energy performance indicators. We also formulated recommendations on the co-combustion of gas hydrates with conventional fuels in combustion chambers. Finally, we proposed engineering solutions for the effective use of gas hydrates in power plants.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2023
Matèries:
Accés en línia:https://doi.org/10.1016/j.fuel.2023.128046
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669336

MARC

LEADER 00000naa0a2200000 4500
001 669336
005 20250213104356.0
035 |a (RuTPU)RU\TPU\network\40576 
035 |a RU\TPU\network\40045 
090 |a 669336 
100 |a 20230327d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Co-combustion of methane hydrate and conventional fuels  |f O. S. Gaydukova, V. V. Dorokhov, S. Ya. Misyura [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 56 tit.] 
330 |a This paper presents the experimental data on the co-combustion of methane hydrate powder with conventional fuels: gasoline, kerosene, Diesel fuel, coal, and coal slime. For the experiments we used a laboratory-scale combustion chamber based on an induction system on the walls and a spark ignition system. Fuel ignition delay times were measured during separate and simultaneous supply of fuel components. It was found that the combustion of slow-burning fuels can be intensified by injecting methane hydrate granules. Liquid fuels with high concentrations of light fractions can be used to intensify the combustion of methane hydrate at relatively low temperatures in the combustion chamber. After recording the concentrations of the main components of combustion products, we rationalized the environmental benefits of gas hydrates used as the primary and secondary fuel components. The relative efficiency coefficients were calculated for fuels in terms of their environmental, economic, and energy performance indicators. We also formulated recommendations on the co-combustion of gas hydrates with conventional fuels in combustion chambers. Finally, we proposed engineering solutions for the effective use of gas hydrates in power plants. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Fuel 
463 |t Vol. 344  |v [128046, 13 p.]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a methane hydrate 
610 1 |a liquid fuel 
610 1 |a power production 
610 1 |a co-combustion 
610 1 |a anthropogenic gases 
610 1 |a fuel reactivity 
610 1 |a гидрат метана 
610 1 |a жидкое топливо 
610 1 |a сжигание 
610 1 |a антропогенные газы 
610 1 |a реактивность 
701 1 |a Gaydukova  |b O. S.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1993-  |g Olga Sergeevna  |3 (RuTPU)RU\TPU\pers\46480 
701 1 |a Dorokhov  |b V. V.  |c specialist in the field of thermal power engineering and heat engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1997-  |g Vadim Valerjevich  |3 (RuTPU)RU\TPU\pers\47191 
701 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |3 (RuTPU)RU\TPU\pers\39641 
701 1 |a Morozov  |b V. S.  |c linguist  |c Senior Lecturer of Tomsk Polytechnic University  |f 1987-  |g Vasiliy Sergeevich  |3 (RuTPU)RU\TPU\pers\33217 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Энергетический институт  |b Лаборатория моделирования процессов тепломассопереноса  |3 (RuTPU)RU\TPU\col\19906 
801 0 |a RU  |b 63413507  |c 20230327  |g RCR 
856 4 |u https://doi.org/10.1016/j.fuel.2023.128046 
942 |c CF