Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography

Bibliographic Details
Parent link:NDT & E International
Vol. 130.— 2022.— [102673, 9 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Other Authors: Moskovchenko A. I. Aleksey Igorevich, Svantner M. Michal, Vavilov V. P. Vladimir Platonovich, Chulkov A. O. Arseniy Olegovich
Summary:Title screen
This study introduces a novel approach to the presentation of the probability of detection (POD) function in infrared (IR) thermographic nondestructive testing. The modified POD is suggested as a function of two defect parameters, namely, defect depth and lateral size. The proposed approach is based on calculating theoretical values of maximum temperature contrast for many defect size/depth combinations by using an appropriate analytical model. Furthermore, these values are used for the quantification of defects to produce predicted POD curves by applying a signal/response method. The results appear as the POD maps illustrating detectability of defects with various size/depth combinations. By setting a particular POD threshold, for example, 90%, the detectability limit contours can be obtained. These contours illustrate the limiting combinations of the depth and diameter of the defects, which can be detected with a required probability of correct detection under a particular temperature signal threshold. The proposed methodology is illustrated with an example of using the POD approach in pulsed IR thermographic inspection of a 3D printed specimen with artificial sphere-like defects. Such an approach allows predicting the detectability of defects in a vast range of depth/size ratios by using an analytical model and a limited number of experiments.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.1016/j.ndteint.2022.102673
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669294

MARC

LEADER 00000naa0a2200000 4500
001 669294
005 20250213114121.0
035 |a (RuTPU)RU\TPU\network\40534 
035 |a RU\TPU\network\39798 
090 |a 669294 
100 |a 20230320d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography  |f A. I. Moskovchenko, M. Svantner, V. P. Vavilov, A. O. Chulkov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 36 tit.] 
330 |a This study introduces a novel approach to the presentation of the probability of detection (POD) function in infrared (IR) thermographic nondestructive testing. The modified POD is suggested as a function of two defect parameters, namely, defect depth and lateral size. The proposed approach is based on calculating theoretical values of maximum temperature contrast for many defect size/depth combinations by using an appropriate analytical model. Furthermore, these values are used for the quantification of defects to produce predicted POD curves by applying a signal/response method. The results appear as the POD maps illustrating detectability of defects with various size/depth combinations. By setting a particular POD threshold, for example, 90%, the detectability limit contours can be obtained. These contours illustrate the limiting combinations of the depth and diameter of the defects, which can be detected with a required probability of correct detection under a particular temperature signal threshold. The proposed methodology is illustrated with an example of using the POD approach in pulsed IR thermographic inspection of a 3D printed specimen with artificial sphere-like defects. Such an approach allows predicting the detectability of defects in a vast range of depth/size ratios by using an analytical model and a limited number of experiments. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t NDT & E International 
463 |t Vol. 130  |v [102673, 9 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a probability of detection 
610 1 |a infrared thermography 
610 1 |a detectability 
610 1 |a defect depth 
610 1 |a инфракрасная термография 
610 1 |a обнаружение 
701 1 |a Moskovchenko  |b A. I.  |g Aleksey Igorevich 
701 1 |a Svantner  |b M.  |g Michal 
701 1 |a Vavilov  |b V. P.  |c Specialist in the field of dosimetry and methodology of nondestructive testing (NDT)  |c Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1949-  |g Vladimir Platonovich  |3 (RuTPU)RU\TPU\pers\32161  |9 16163 
701 1 |a Chulkov  |b A. O.  |c specialist in the field of non-destructive testing  |c Deputy Director for Scientific and Educational Activities; acting manager; Senior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1989-  |g Arseniy Olegovich  |3 (RuTPU)RU\TPU\pers\32220  |9 16220 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Научно-производственная лаборатория "Тепловой контроль"  |3 (RuTPU)RU\TPU\col\23838 
801 0 |a RU  |b 63413507  |c 20230320  |g RCR 
856 4 |u https://doi.org/10.1016/j.ndteint.2022.102673 
942 |c CF