Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography

Bibliographic Details
Parent link:NDT & E International
Vol. 130.— 2022.— [102673, 9 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Other Authors: Moskovchenko A. I. Aleksey Igorevich, Svantner M. Michal, Vavilov V. P. Vladimir Platonovich, Chulkov A. O. Arseniy Olegovich
Summary:Title screen
This study introduces a novel approach to the presentation of the probability of detection (POD) function in infrared (IR) thermographic nondestructive testing. The modified POD is suggested as a function of two defect parameters, namely, defect depth and lateral size. The proposed approach is based on calculating theoretical values of maximum temperature contrast for many defect size/depth combinations by using an appropriate analytical model. Furthermore, these values are used for the quantification of defects to produce predicted POD curves by applying a signal/response method. The results appear as the POD maps illustrating detectability of defects with various size/depth combinations. By setting a particular POD threshold, for example, 90%, the detectability limit contours can be obtained. These contours illustrate the limiting combinations of the depth and diameter of the defects, which can be detected with a required probability of correct detection under a particular temperature signal threshold. The proposed methodology is illustrated with an example of using the POD approach in pulsed IR thermographic inspection of a 3D printed specimen with artificial sphere-like defects. Such an approach allows predicting the detectability of defects in a vast range of depth/size ratios by using an analytical model and a limited number of experiments.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2022
Subjects:
Online Access:https://doi.org/10.1016/j.ndteint.2022.102673
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669294
Description
Summary:Title screen
This study introduces a novel approach to the presentation of the probability of detection (POD) function in infrared (IR) thermographic nondestructive testing. The modified POD is suggested as a function of two defect parameters, namely, defect depth and lateral size. The proposed approach is based on calculating theoretical values of maximum temperature contrast for many defect size/depth combinations by using an appropriate analytical model. Furthermore, these values are used for the quantification of defects to produce predicted POD curves by applying a signal/response method. The results appear as the POD maps illustrating detectability of defects with various size/depth combinations. By setting a particular POD threshold, for example, 90%, the detectability limit contours can be obtained. These contours illustrate the limiting combinations of the depth and diameter of the defects, which can be detected with a required probability of correct detection under a particular temperature signal threshold. The proposed methodology is illustrated with an example of using the POD approach in pulsed IR thermographic inspection of a 3D printed specimen with artificial sphere-like defects. Such an approach allows predicting the detectability of defects in a vast range of depth/size ratios by using an analytical model and a limited number of experiments.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.ndteint.2022.102673