Features of the Destruction of a Microjet of a Diluted Polymer Solution into Main and Satellite Microdrops under the Action of an External Vibrational Impact

Dades bibliogràfiques
Parent link:Technical Physics
Vol. 67, iss. 12.— 2023.— [P. 779–790]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова), Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Altres autors: Khomutov N. A. Nikita Andreevich, Semyonova A. E. Aleksandra Evgenjevna, Belonogov M. V. Maxim Vladimirovich, Di Martino A. Antonio, Khan E. A. Elena Alekseevna, Piskunov M. V. Maksim Vladimirovich
Sumari:Title screen
An experimental study of the morphology of a laminar microjet flow of dilute aqueous solutions of sodium alginate with and without the addition of hydroxyethyl cellulose after a nozzle subjected to external vibration excitation from the action of the inverse piezoelectric effect was carried out. The influence of the polymer concentration in solution (0.5-5 mg/mL), liquid flow rate (4-26 mL/min), and external disturbance current frequency (0-1.2 kHz) on the capillary fragmentation of a microjet with a diameter of about 210 μm in the range of Onesorge numbers from 0.046 to 1.88 and Reynolds numbers from 0.7 to 470 was studied. The regimes of microjet flow and fragmentation into microdrops are identified, indicating the boundaries of transitions between them, and a general map of regimes is constructed. Taking into account the concentration of the polymer in the solution, the dependence of the length of destruction of the microjet on its velocity is shown. The conditions for monodisperse destruction of a microjet with an equidistant location of the main microdrops in the flow are established, which are related to the optimal balance between the molecular weight of the polymer in solution, the intensity of the external perturbation, and the stress relaxation time in polymer viscoelastic microjets. The role of the formation of “beads-on-string” structures in the capillary destruction of a microjet has been studied with the identification of cases of the absence of the formation of satellite microdrops from liquid filaments between the main microdroplets. The results obtained are of practical importance for applications based on air microhydrodynamics (bioengineering and additive technologies), which work based on heterogeneous fluids.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2023
Matèries:
Accés en línia:https://doi.org/10.1134/S1063784222110056
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669266

MARC

LEADER 00000naa0a2200000 4500
001 669266
005 20250514101021.0
035 |a (RuTPU)RU\TPU\network\40506 
035 |a RU\TPU\network\38745 
090 |a 669266 
100 |a 20230314d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a RU 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Features of the Destruction of a Microjet of a Diluted Polymer Solution into Main and Satellite Microdrops under the Action of an External Vibrational Impact  |d Особенности разрушения микроструи разбавленного полимерного раствора на основные и спутниковые микрокапли под действием внешнего вибрационного воздействия  |f N. A. Khomutov, A. E. Semyonova, M. V. Belonogov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 28 tit.] 
330 |a An experimental study of the morphology of a laminar microjet flow of dilute aqueous solutions of sodium alginate with and without the addition of hydroxyethyl cellulose after a nozzle subjected to external vibration excitation from the action of the inverse piezoelectric effect was carried out. The influence of the polymer concentration in solution (0.5-5 mg/mL), liquid flow rate (4-26 mL/min), and external disturbance current frequency (0-1.2 kHz) on the capillary fragmentation of a microjet with a diameter of about 210 μm in the range of Onesorge numbers from 0.046 to 1.88 and Reynolds numbers from 0.7 to 470 was studied. The regimes of microjet flow and fragmentation into microdrops are identified, indicating the boundaries of transitions between them, and a general map of regimes is constructed. Taking into account the concentration of the polymer in the solution, the dependence of the length of destruction of the microjet on its velocity is shown. The conditions for monodisperse destruction of a microjet with an equidistant location of the main microdrops in the flow are established, which are related to the optimal balance between the molecular weight of the polymer in solution, the intensity of the external perturbation, and the stress relaxation time in polymer viscoelastic microjets. The role of the formation of “beads-on-string” structures in the capillary destruction of a microjet has been studied with the identification of cases of the absence of the formation of satellite microdrops from liquid filaments between the main microdroplets. The results obtained are of practical importance for applications based on air microhydrodynamics (bioengineering and additive technologies), which work based on heterogeneous fluids. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Technical Physics 
463 |t Vol. 67, iss. 12  |v [P. 779–790]  |d 2023 
510 1 |a Особенности разрушения микроструи разбавленного полимерного раствора на основные и спутниковые микрокапли под действием внешнего вибрационного воздействия  |z rus 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Rayleigh–Plato instability 
610 1 |a inverse piezoelectric effect 
610 1 |a monodisperse breaking 
610 1 |a stress relaxation time 
610 1 |a microjet flow 
701 1 |a Khomutov  |b N. A.  |c specialist in the field of thermal power engineering and heat engineering  |c research engineer at Tomsk Polytechnic University  |f 1997-  |g Nikita Andreevich  |3 (RuTPU)RU\TPU\pers\47495 
701 1 |a Semyonova  |b A. E.  |c specialist in the field of thermal power engineering and heat engineering  |c research engineer at Tomsk Polytechnic University  |f 1998-  |g Aleksandra Evgenjevna  |3 (RuTPU)RU\TPU\pers\47497 
701 1 |a Belonogov  |b M. V.  |c specialist in the field of heat power engineering and heat engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1996-  |g Maxim Vladimirovich  |3 (RuTPU)RU\TPU\pers\46899  |9 22515 
701 1 |a Di Martino  |b A.  |c organic chemist  |c research of Tomsk Polytechnic University  |f 1984-  |g Antonio  |3 (RuTPU)RU\TPU\pers\39440  |9 20983 
701 1 |a Khan  |b E. A.  |c chemical engineer  |c Associate Scientist of Tomsk Polytechnic University  |f 1997-  |g Elena Alekseevna  |3 (RuTPU)RU\TPU\pers\47219 
701 1 |a Piskunov  |b M. V.  |c specialist in the field of thermal engineering  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Maksim Vladimirovich  |3 (RuTPU)RU\TPU\pers\34151  |9 17691 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20230517  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1134/S1063784222110056 
942 |c CF