Quasi-hot spraying of coal-water slurries with pyrogenetic water additives

Bibliografiska uppgifter
Parent link:Chemical Engineering Research and Design
Vol. 186.— 2022.— [P. 587-598]
Huvudupphovsman: Gvozdyakov D. V. Dmitry Vasilievich
Institutionell upphovsman: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Övriga upphovsmän: Zenkov A. V. Andrey Viktorovich, Lavrinenko S. V. Sergey Viktorovich
Sammanfattning:Title screen
Experimental results of the influence of thermal preparation of coal-water slurries on their rheological properties and spraying characteristics are presented. The slurry density was found to increase by 14% at a temperature of 293 K with the substitution of water in coal-water fuel with a similar by weight amount of pyrogenetic water (no more than 25%). Preliminary thermal preparation of coal-water slurries up to 333 K reduces its density by 7%. The experimental results showed that the greatest influence of thermal preparation of the studied slurries on their dynamic viscosity is characteristic of the temperature range from 293 to 323 K. At such temperature values, a decrease in the slurry viscosity is by 17–20% in comparison with two-component coal-water fuel. Preheating of slurries before spraying, in the temperature range from 293 to 333 K, makes it possible to increase the jet spraying angle by 21–29% compared to conventional two-component coal-water fuel at a temperature of 293 K. The velocity of droplets of the investigated coal-water fuels in the range of changes in their initial temperature from 293 to 333 K varies slightly. The difference is no more than 5%. Increase in the pyrogenetic water concentration in coal-water fuel of more than 25% by weight is impractical for lignite due to the dramatic increase in its viscosity. In the studied range of the third component concentration of the slurry, increase in the average size of fuel droplets is about 8%. Preheating of CWF before spraying can significantly reduce the average size of the droplets. The changes are 5–9% in comparison with coal-water slurry at a temperature of 293 K. Thermal preparation of slurries, according to the results of thermal imaging studies of coal-water fuel jet, affects the thermal contour of the jet and the geometry of its temperature zones.
Режим доступа: по договору с организацией-держателем ресурса
Språk:engelska
Publicerad: 2022
Ämnen:
Länkar:https://doi.org/10.1016/j.cherd.2022.08.029
Materialtyp: Elektronisk Bokavsnitt
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669238

MARC

LEADER 00000naa0a2200000 4500
001 669238
005 20250213160953.0
035 |a (RuTPU)RU\TPU\network\40478 
035 |a RU\TPU\network\39714 
090 |a 669238 
100 |a 20230309d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a UK 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Quasi-hot spraying of coal-water slurries with pyrogenetic water additives  |f D. V. Gvozdyakov, A. V. Zenkov, S. V. Lavrinenko 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Experimental results of the influence of thermal preparation of coal-water slurries on their rheological properties and spraying characteristics are presented. The slurry density was found to increase by 14% at a temperature of 293 K with the substitution of water in coal-water fuel with a similar by weight amount of pyrogenetic water (no more than 25%). Preliminary thermal preparation of coal-water slurries up to 333 K reduces its density by 7%. The experimental results showed that the greatest influence of thermal preparation of the studied slurries on their dynamic viscosity is characteristic of the temperature range from 293 to 323 K. At such temperature values, a decrease in the slurry viscosity is by 17–20% in comparison with two-component coal-water fuel. Preheating of slurries before spraying, in the temperature range from 293 to 333 K, makes it possible to increase the jet spraying angle by 21–29% compared to conventional two-component coal-water fuel at a temperature of 293 K. The velocity of droplets of the investigated coal-water fuels in the range of changes in their initial temperature from 293 to 333 K varies slightly. The difference is no more than 5%. Increase in the pyrogenetic water concentration in coal-water fuel of more than 25% by weight is impractical for lignite due to the dramatic increase in its viscosity. In the studied range of the third component concentration of the slurry, increase in the average size of fuel droplets is about 8%. Preheating of CWF before spraying can significantly reduce the average size of the droplets. The changes are 5–9% in comparison with coal-water slurry at a temperature of 293 K. Thermal preparation of slurries, according to the results of thermal imaging studies of coal-water fuel jet, affects the thermal contour of the jet and the geometry of its temperature zones. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Chemical Engineering Research and Design 
463 |t Vol. 186  |v [P. 587-598]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a lignite 
610 1 |a pyrogenetic water 
610 1 |a coal-water fuel 
610 1 |a thermal preparation 
610 1 |a viscosity 
610 1 |a spraying 
610 1 |a бурый уголь 
610 1 |a водоугольное топливо 
610 1 |a термическая подготовка 
610 1 |a вязкость 
610 1 |a распыление 
700 1 |a Gvozdyakov  |b D. V.  |c specialist in the field of power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Dmitry Vasilievich  |3 (RuTPU)RU\TPU\pers\35121  |9 18396 
701 1 |a Zenkov  |b A. V.  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |c specialist in the field of power engineering  |f 1992-  |g Andrey Viktorovich  |3 (RuTPU)RU\TPU\pers\37816 
701 1 |a Lavrinenko  |b S. V.  |c specialist in the field of power engineering  |c senior lecturer of Tomsk Polytechnic University  |f 1986-  |g Sergey Viktorovich  |3 (RuTPU)RU\TPU\pers\35748  |9 18905 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
801 0 |a RU  |b 63413507  |c 20230309  |g RCR 
856 4 |u https://doi.org/10.1016/j.cherd.2022.08.029 
942 |c CF