Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings

Xehetasun bibliografikoak
Parent link:ACS Applied Materials and Interfaces
Vol. 14, iss. 1.— 2022.— [P. 104-122]
Erakunde egilea: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Beste egile batzuk: Tamay D. G. Dilara Goksu, Gokyer S. Seyda, Schmidt J. Jurgen, Vladesku A. Alina, Huri P. Y. Pinar Yilgor, Hasirci V. Vasif, Hasirci N. Nesrin
Gaia:Title screen
In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 μm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was −1933 mV for CaP-coated samples, was found significantly electropositive at −275 mV for Ga-doped ones.
All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.
Режим доступа: по договору с организацией-держателем ресурса
Hizkuntza:ingelesa
Argitaratua: 2022
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1021/acsami.1c16307
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669031

MARC

LEADER 00000naa0a2200000 4500
001 669031
005 20250217164117.0
035 |a (RuTPU)RU\TPU\network\40268 
035 |a RU\TPU\network\39167 
090 |a 669031 
100 |a 20230208d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings  |f D. G. Tamay, S. Gokyer, J. Schmidt [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 101 tit.] 
330 |a In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 μm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was −1933 mV for CaP-coated samples, was found significantly electropositive at −275 mV for Ga-doped ones. 
330 |a All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t ACS Applied Materials and Interfaces 
463 |t Vol. 14, iss. 1  |v [P. 104-122]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a biodegradable magnesium implants 
610 1 |a icroarc oxidation 
610 1 |a calcium phosphate coating 
610 1 |a zinc 
610 1 |a gallium 
610 1 |a биоразлагаемые материалы 
610 1 |a имплантаты 
610 1 |a окисление 
701 1 |a Tamay  |b D. G.  |g Dilara Goksu 
701 1 |a Gokyer  |b S.  |g Seyda 
701 1 |a Schmidt  |b J.  |g Jurgen 
701 1 |a Vladesku  |b A.  |c Romanian specialists in the field of biomaterials  |c researcher of Tomsk Polytechnic University, candidate of biological Sciences  |f 1977-  |g Alina  |3 (RuTPU)RU\TPU\pers\39940 
701 1 |a Huri  |b P. Y.  |g Pinar Yilgor 
701 1 |a Hasirci  |b V.  |g Vasif 
701 1 |a Hasirci  |b N.  |g Nesrin 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 0 |a RU  |b 63413507  |c 20230208  |g RCR 
856 4 |u https://doi.org/10.1021/acsami.1c16307 
942 |c CF