Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity

Bibliografiske detaljer
Parent link:Biomaterials Advances
Vol. 134.— 2022.— [112697, 12 p.]
Institution som forfatter: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Andre forfattere: Sviridova E. V. Elizaveta Vitaljevna, Barras A. Alexandre, Addad A. Ahmed, Plotnikov E. V. Evgeny Vladimirovich, Di Martino A. Antonio, Dominique D. Deresmes, Nikiforova K. A. Ksenia Alekseevna, Trusova M. E. Marina Evgenievna, Guselnikova O. A. Olga Andreevna, Szunerits S. Sabine, Postnikov P. S. Pavel Sergeevich, Boukherroub R. Rabah
Summary:Title screen
The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL−1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL−1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL−1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.
Sprog:engelsk
Udgivet: 2022
Fag:
Online adgang:https://doi.org/10.1016/j.msec.2022.112697
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668705

MARC

LEADER 00000naa0a2200000 4500
001 668705
005 20250520131034.0
035 |a (RuTPU)RU\TPU\network\39942 
035 |a RU\TPU\network\39886 
090 |a 668705 
100 |a 20230119d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity  |f E. V. Sviridova, A. Barras, A. Addad [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 80 tit.] 
330 |a The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL−1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL−1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL−1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance. 
461 |t Biomaterials Advances 
463 |t Vol. 134  |v [112697, 12 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a carbon dots 
610 1 |a diazonium chemistry 
610 1 |a tetraalkylammonium salts 
610 1 |a antibacterial activity 
610 1 |a biofilms 
610 1 |a углеродные точки 
610 1 |a тетраалкиламмониевые соли 
610 1 |a диазониевые соли 
610 1 |a антибактериальная активность 
610 1 |a биопленки 
701 1 |a Sviridova  |b E. V.  |c specialist in the field of chemical technology, petrochemistry and biotechnology  |c engineer of Tomsk Polytechnic University  |f 1994-  |g Elizaveta Vitaljevna  |3 (RuTPU)RU\TPU\pers\46149 
701 1 |a Barras  |b A.  |g Alexandre 
701 1 |a Addad  |b A.  |g Ahmed 
701 1 |a Plotnikov  |b E. V.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Chemical Sciences  |f 1983-  |g Evgeny Vladimirovich  |3 (RuTPU)RU\TPU\pers\32469  |9 16417 
701 1 |a Di Martino  |b A.  |c organic chemist  |c research of Tomsk Polytechnic University  |f 1984-  |g Antonio  |3 (RuTPU)RU\TPU\pers\39440  |9 20983 
701 1 |a Dominique  |b D.  |g Deresmes 
701 1 |a Nikiforova  |b K. A.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1988-  |g Ksenia Alekseevna  |3 (RuTPU)RU\TPU\pers\44186 
701 1 |a Trusova  |b M. E.  |c organic chemist  |c Associate professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1982-  |g Marina Evgenievna  |3 (RuTPU)RU\TPU\pers\31823  |9 15918 
701 1 |a Guselnikova  |b O. A.  |c chemist  |c Researcher at Tomsk Polytechnic University, Candidate of Chemical Sciences  |f 1992-  |g Olga Andreevna  |3 (RuTPU)RU\TPU\pers\34478  |9 17861 
701 1 |a Szunerits  |b S.  |g Sabine 
701 1 |a Postnikov  |b P. S.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Pavel Sergeevich  |3 (RuTPU)RU\TPU\pers\31287 
701 1 |a Boukherroub  |b R.  |g Rabah 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20230119  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.msec.2022.112697 
942 |c CF