Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm

Бібліографічні деталі
Parent link:Journal of Petroleum Exploration and Production
Vol. 12, iss. 2.— 2022.— [P. 383–395]
Співавтор: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Інші автори: Ayman M. A. Mutahar AlRassas, Mohammed A. A. Al-qaness, Ahmed A. E. Ewees, Shaoran R. Ren, Renyuan S. Sun, Lin Pan, Mokhamed Elsaed (Mohamed Abd Elaziz) A. M. Akhmed Mokhamed
Резюме:Title screen
Oil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil production data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Furthermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting model that showed significant performance.
Режим доступа: по договору с организацией-держателем ресурса
Мова:Англійська
Опубліковано: 2022
Предмети:
Онлайн доступ:https://doi.org/10.1007/s13202-021-01405-w
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668694

MARC

LEADER 00000naa0a2200000 4500
001 668694
005 20250221161551.0
035 |a (RuTPU)RU\TPU\network\39931 
035 |a RU\TPU\network\39881 
090 |a 668694 
100 |a 20230118d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm  |f M. A. Ayman, A. A. Al-qaness Mohammed, A. E. Ahmed [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Oil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil production data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Furthermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting model that showed significant performance. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Petroleum Exploration and Production 
463 |t Vol. 12, iss. 2  |v [P. 383–395]  |d 2022 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a ANFIS 
610 1 |a slime mould algorithm 
610 1 |a oilfield 
610 1 |a time series forecasting 
610 1 |a oil production 
610 1 |a добыча нефти 
701 1 |a Ayman  |b M. A.  |g Mutahar AlRassas 
701 1 |a Mohammed  |b A. A. Al-qaness 
701 1 |a Ahmed  |b A. E.  |g Ewees 
701 1 |a Shaoran  |b R.  |g Ren 
701 1 |a Renyuan  |b S.  |g Sun 
701 0 |a Lin Pan 
701 1 |a Mokhamed Elsaed (Mohamed Abd Elaziz)  |b A. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1987-  |g Akhmed Mokhamed  |3 (RuTPU)RU\TPU\pers\46943 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 0 |a RU  |b 63413507  |c 20230118  |g PSBO 
856 4 |u https://doi.org/10.1007/s13202-021-01405-w 
942 |c CF