Cold-seep carbonates of the Laptev Sea continental slope: Constraints from fluid sources and environment of formation

Dettagli Bibliografici
Parent link:Chemical Geology
Vol. 610.— 2022.— [121103, 13 p.]
Ente Autore: Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение геологии
Altri autori: Ruban A. S. Aleksey Sergeevich, Rudmin M. A. Maksim Andreevich, Mazurov A. K. Aleksey Karpovich, Chernykh D. V. Denis Vyacheslavovich, Dudarev O. V. Oleg Viktorovich, Semiletov I. P. Igor Petrovich
Riassunto:Title screen
This study presents results of the petrographic, mineralogical, stable isotopes of oxygen and carbon, and trace element investigation of authigenic carbonates collected at newly discovered active cold seeps on the Laptev Sea continental slope at ∼300 m water depth. These carbonates are mainly represented by Mg-calcite with MgCO3 content from 9.1 mol% to 14.0 mol%. The low δ13C values of carbonates ranging from −50.6 ‰ to −32.4 ‰ (V-PDB) indicate that they were formed from anaerobic oxidation of biogenic methane and minor participation of other carbon sources. The difference between measured (from 4.7 ‰ to 5.5 ‰) and calculated (4.0 ‰) δ18Ocarb values might be inherited from fluids enriched in 18O due to dissociation of gas hydrates, which could be the source of methane. The carbonates exhibit weak enrichment in Co, moderate and strong enrichments in As, Mo, and Sb, and strong enrichment in U. Interestingly, As, Sb, and Co correlate with the pyrite content. This indicates that authigenic iron sulfides promote the immobilization of these redox-sensitive elements in seep sediments. The (Mo/U)EF values and anomalies of concentration of Mo and U probably indicate variations in the redox conditions during carbonate formation due to episodically seepage activity changes. Ascending methane-bearing fluids were the main contributor to the enrichment of cold-seep carbonates in As, Mo, Sb, and U at the Laptev Sea continental slope. However additional input from the particulate shuttle process can not be ruled out.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2022
Soggetti:
Accesso online:https://doi.org/10.1016/j.chemgeo.2022.121103
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668683

MARC

LEADER 00000naa0a2200000 4500
001 668683
005 20250221163308.0
035 |a (RuTPU)RU\TPU\network\39920 
035 |a RU\TPU\network\38173 
090 |a 668683 
100 |a 20230117d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Cold-seep carbonates of the Laptev Sea continental slope: Constraints from fluid sources and environment of formation  |f A. S. Ruban, M. A. Rudmin, A. K. Mazurov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a This study presents results of the petrographic, mineralogical, stable isotopes of oxygen and carbon, and trace element investigation of authigenic carbonates collected at newly discovered active cold seeps on the Laptev Sea continental slope at ∼300 m water depth. These carbonates are mainly represented by Mg-calcite with MgCO3 content from 9.1 mol% to 14.0 mol%. The low δ13C values of carbonates ranging from −50.6 ‰ to −32.4 ‰ (V-PDB) indicate that they were formed from anaerobic oxidation of biogenic methane and minor participation of other carbon sources. The difference between measured (from 4.7 ‰ to 5.5 ‰) and calculated (4.0 ‰) δ18Ocarb values might be inherited from fluids enriched in 18O due to dissociation of gas hydrates, which could be the source of methane. The carbonates exhibit weak enrichment in Co, moderate and strong enrichments in As, Mo, and Sb, and strong enrichment in U. Interestingly, As, Sb, and Co correlate with the pyrite content. This indicates that authigenic iron sulfides promote the immobilization of these redox-sensitive elements in seep sediments. The (Mo/U)EF values and anomalies of concentration of Mo and U probably indicate variations in the redox conditions during carbonate formation due to episodically seepage activity changes. Ascending methane-bearing fluids were the main contributor to the enrichment of cold-seep carbonates in As, Mo, Sb, and U at the Laptev Sea continental slope. However additional input from the particulate shuttle process can not be ruled out. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Chemical Geology 
463 |t Vol. 610  |v [121103, 13 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a authigenic carbonates 
610 1 |a cold seep 
610 1 |a stable oxygen and carbon isotopes 
610 1 |a trace element enrichments 
610 1 |a redox conditions 
610 1 |a Laptev Sea 
701 1 |a Ruban  |b A. S.  |c geologist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Aleksey Sergeevich  |3 (RuTPU)RU\TPU\pers\34023  |9 17590 
701 1 |a Rudmin  |b M. A.  |c geologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences  |f 1989-  |g Maksim Andreevich  |3 (RuTPU)RU\TPU\pers\33254  |9 16999 
701 1 |a Mazurov  |b A. K.  |c geologist  |c Professor-consultant of Tomsk Polytechnic University, Doctor of Geological and Mineralogical Sciences  |f 1951-  |g Aleksey Karpovich   |3 (RuTPU)RU\TPU\pers\30165  |9 14563 
701 1 |a Chernykh  |b D. V.  |c geologist  |c engineer at Tomsk Polytechnic University, candidate of technical Sciences  |f 1988-  |g Denis Vyacheslavovich  |3 (RuTPU)RU\TPU\pers\35528 
701 1 |a Dudarev  |b O. V.  |c geologist  |c researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences  |f 1955-  |g Oleg Viktorovich  |3 (RuTPU)RU\TPU\pers\35379 
701 1 |a Semiletov  |b I. P.  |c geographer  |c Professor of Tomsk Polytechnic University, doctor of geographical Sciences  |f 1955-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\34220 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение геологии  |3 (RuTPU)RU\TPU\col\23542 
801 0 |a RU  |b 63413507  |c 20230117  |g RCR 
856 4 |u https://doi.org/10.1016/j.chemgeo.2022.121103 
942 |c CF