Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation

Opis bibliograficzny
Parent link:Colloids and Surfaces A: Physicochemical and Engineering Aspects
Vol. 649.— 2022.— [129464, 12 p.]
organizacja autorów: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Лаборатория плазменных гибридных систем
Kolejni autorzy: Marjin (Maryin) P. V. Pavel Vladimirovich, Fedotkin A. Yu. Aleksandr Yurjevich, Bolbasov E. N. Evgeny Nikolaevich, Kozelskaya A. I. Anna Ivanovna, Buldakov M. A. Mikhail Aleksandrovich, Evtina A. A. Anastasiya Alekseevna, Cherdyntseva N. V. Nadezhda Viktorovna, Rutkowski S. Sven, Tverdokhlebov S. I. Sergei Ivanovich
Streszczenie:Title screen
Despite the widespread use of bioresorbable electrospun poly-L-lactic acid scaffolds in tissue engineering, a significant drawback is the high hydrophobicity of their surface. A proper solution for this problem is the surface modification with titanium oxynitride coatings using reactive magnetron sputtering. However, this method is characterized by a low deposition rate and the difficult selection of suitable working parameters. A feasible solution to this problem is the addition of a noble gas to the working gas nitrogen, which increases the deposition rate and thus the coating thicknesses, even with gentle magnetron sputtering process parameters. In this study, the results of surface modification of poly-L-lactic acid scaffolds using direct current reactive magnetron sputtering of a titanium target in the presence of a mixture of the working gas nitrogen with one of the following noble gases: helium, neon, argon, krypton, and xenon. Due to this modification, depending on the composition of the gas mixture, a thin nitrogen-containing titanium coating forms on the scaffold surface, represented by titanium oxide and titanium oxynitrides of different stoichiometry. At the same time, the modification process does not significantly affect the morphology, crystallinity and molecular conformation of the poly-L-lactic acid scaffold backbones, while an increase in the surface wettability is observed. Another biomedical important effect of this surface modification is an observed increase in the adhesion and proliferative activity of fibroblast culture applied to the investigated poly-L-lactic acid scaffold samples. The poly-L-lactic acid scaffold samples surface-modified via direct current reactive magnetron sputtering of a titanium target in a mixture of the working gas nitrogen and the noble gas argon shows the highest number of adhered fibroblasts.
Режим доступа: по договору с организацией-держателем ресурса
Język:angielski
Wydane: 2022
Hasła przedmiotowe:
Dostęp online:https://doi.org/10.1016/j.colsurfa.2022.129464
Format: Elektroniczne Rozdział
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668647

MARC

LEADER 00000naa0a2200000 4500
001 668647
005 20250924123520.0
035 |a (RuTPU)RU\TPU\network\39884 
035 |a RU\TPU\network\39453 
090 |a 668647 
100 |a 20230116d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation  |f P. V. Marjin (Maryin), A. Yu. Fedotkin, E. N. Bolbasov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 59 tit.] 
330 |a Despite the widespread use of bioresorbable electrospun poly-L-lactic acid scaffolds in tissue engineering, a significant drawback is the high hydrophobicity of their surface. A proper solution for this problem is the surface modification with titanium oxynitride coatings using reactive magnetron sputtering. However, this method is characterized by a low deposition rate and the difficult selection of suitable working parameters. A feasible solution to this problem is the addition of a noble gas to the working gas nitrogen, which increases the deposition rate and thus the coating thicknesses, even with gentle magnetron sputtering process parameters. In this study, the results of surface modification of poly-L-lactic acid scaffolds using direct current reactive magnetron sputtering of a titanium target in the presence of a mixture of the working gas nitrogen with one of the following noble gases: helium, neon, argon, krypton, and xenon. Due to this modification, depending on the composition of the gas mixture, a thin nitrogen-containing titanium coating forms on the scaffold surface, represented by titanium oxide and titanium oxynitrides of different stoichiometry. At the same time, the modification process does not significantly affect the morphology, crystallinity and molecular conformation of the poly-L-lactic acid scaffold backbones, while an increase in the surface wettability is observed. Another biomedical important effect of this surface modification is an observed increase in the adhesion and proliferative activity of fibroblast culture applied to the investigated poly-L-lactic acid scaffold samples. The poly-L-lactic acid scaffold samples surface-modified via direct current reactive magnetron sputtering of a titanium target in a mixture of the working gas nitrogen and the noble gas argon shows the highest number of adhered fibroblasts. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Colloids and Surfaces A: Physicochemical and Engineering Aspects 
463 |t Vol. 649  |v [129464, 12 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a electrospun PLLA scaffold 
610 1 |a reactive magnetron sputtering 
610 1 |a noble gases 
610 1 |a nitrogen-containing titanium coating 
610 1 |a cell colonization 
610 1 |a biomedical material 
610 1 |a реактивное магнетронное напыление 
610 1 |a благородные газы 
610 1 |a титановые покрытия 
610 1 |a колонизация 
610 1 |a биомедицинские материалы 
701 1 |a Marjin (Maryin)  |b P. V.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1994-  |g Pavel Vladimirovich  |3 (RuTPU)RU\TPU\pers\43541  |9 21683 
701 1 |a Fedotkin  |b A. Yu.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1994-  |g Aleksandr Yurjevich  |3 (RuTPU)RU\TPU\pers\44107 
701 1 |a Bolbasov  |b E. N.  |c physicist  |c Senior Researcher at Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1981-  |g Evgeny Nikolaevich  |3 (RuTPU)RU\TPU\pers\30857  |9 15103 
701 1 |a Kozelskaya  |b A. I.  |c physicist  |c Researcher at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1985-  |g Anna Ivanovna  |3 (RuTPU)RU\TPU\pers\39663  |9 21044 
701 1 |a Buldakov  |b M. A.  |g Mikhail Aleksandrovich 
701 1 |a Evtina  |b A. A.  |g Anastasiya Alekseevna 
701 1 |a Cherdyntseva  |b N. V.  |g Nadezhda Viktorovna 
701 1 |a Rutkowski  |b S.  |c chemist  |c Research Engineer, Tomsk Polytechnic University, Ph.D  |f 1981-  |g Sven  |3 (RuTPU)RU\TPU\pers\46773  |9 22409 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Лаборатория плазменных гибридных систем  |3 (RuTPU)RU\TPU\col\23381 
801 0 |a RU  |b 63413507  |c 20230116  |g RCR 
856 4 |u https://doi.org/10.1016/j.colsurfa.2022.129464 
942 |c CF