Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation
| Parent link: | Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 649.— 2022.— [129464, 12 p.] |
|---|---|
| organizacja autorów: | , |
| Kolejni autorzy: | , , , , , , , , |
| Streszczenie: | Title screen Despite the widespread use of bioresorbable electrospun poly-L-lactic acid scaffolds in tissue engineering, a significant drawback is the high hydrophobicity of their surface. A proper solution for this problem is the surface modification with titanium oxynitride coatings using reactive magnetron sputtering. However, this method is characterized by a low deposition rate and the difficult selection of suitable working parameters. A feasible solution to this problem is the addition of a noble gas to the working gas nitrogen, which increases the deposition rate and thus the coating thicknesses, even with gentle magnetron sputtering process parameters. In this study, the results of surface modification of poly-L-lactic acid scaffolds using direct current reactive magnetron sputtering of a titanium target in the presence of a mixture of the working gas nitrogen with one of the following noble gases: helium, neon, argon, krypton, and xenon. Due to this modification, depending on the composition of the gas mixture, a thin nitrogen-containing titanium coating forms on the scaffold surface, represented by titanium oxide and titanium oxynitrides of different stoichiometry. At the same time, the modification process does not significantly affect the morphology, crystallinity and molecular conformation of the poly-L-lactic acid scaffold backbones, while an increase in the surface wettability is observed. Another biomedical important effect of this surface modification is an observed increase in the adhesion and proliferative activity of fibroblast culture applied to the investigated poly-L-lactic acid scaffold samples. The poly-L-lactic acid scaffold samples surface-modified via direct current reactive magnetron sputtering of a titanium target in a mixture of the working gas nitrogen and the noble gas argon shows the highest number of adhered fibroblasts. Режим доступа: по договору с организацией-держателем ресурса |
| Język: | angielski |
| Wydane: |
2022
|
| Hasła przedmiotowe: | |
| Dostęp online: | https://doi.org/10.1016/j.colsurfa.2022.129464 |
| Format: | Elektroniczne Rozdział |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668647 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 668647 | ||
| 005 | 20250924123520.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\39884 | ||
| 035 | |a RU\TPU\network\39453 | ||
| 090 | |a 668647 | ||
| 100 | |a 20230116d2022 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation |f P. V. Marjin (Maryin), A. Yu. Fedotkin, E. N. Bolbasov [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 59 tit.] | ||
| 330 | |a Despite the widespread use of bioresorbable electrospun poly-L-lactic acid scaffolds in tissue engineering, a significant drawback is the high hydrophobicity of their surface. A proper solution for this problem is the surface modification with titanium oxynitride coatings using reactive magnetron sputtering. However, this method is characterized by a low deposition rate and the difficult selection of suitable working parameters. A feasible solution to this problem is the addition of a noble gas to the working gas nitrogen, which increases the deposition rate and thus the coating thicknesses, even with gentle magnetron sputtering process parameters. In this study, the results of surface modification of poly-L-lactic acid scaffolds using direct current reactive magnetron sputtering of a titanium target in the presence of a mixture of the working gas nitrogen with one of the following noble gases: helium, neon, argon, krypton, and xenon. Due to this modification, depending on the composition of the gas mixture, a thin nitrogen-containing titanium coating forms on the scaffold surface, represented by titanium oxide and titanium oxynitrides of different stoichiometry. At the same time, the modification process does not significantly affect the morphology, crystallinity and molecular conformation of the poly-L-lactic acid scaffold backbones, while an increase in the surface wettability is observed. Another biomedical important effect of this surface modification is an observed increase in the adhesion and proliferative activity of fibroblast culture applied to the investigated poly-L-lactic acid scaffold samples. The poly-L-lactic acid scaffold samples surface-modified via direct current reactive magnetron sputtering of a titanium target in a mixture of the working gas nitrogen and the noble gas argon shows the highest number of adhered fibroblasts. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Colloids and Surfaces A: Physicochemical and Engineering Aspects | ||
| 463 | |t Vol. 649 |v [129464, 12 p.] |d 2022 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a electrospun PLLA scaffold | |
| 610 | 1 | |a reactive magnetron sputtering | |
| 610 | 1 | |a noble gases | |
| 610 | 1 | |a nitrogen-containing titanium coating | |
| 610 | 1 | |a cell colonization | |
| 610 | 1 | |a biomedical material | |
| 610 | 1 | |a реактивное магнетронное напыление | |
| 610 | 1 | |a благородные газы | |
| 610 | 1 | |a титановые покрытия | |
| 610 | 1 | |a колонизация | |
| 610 | 1 | |a биомедицинские материалы | |
| 701 | 1 | |a Marjin (Maryin) |b P. V. |c physicist |c engineer of Tomsk Polytechnic University |f 1994- |g Pavel Vladimirovich |3 (RuTPU)RU\TPU\pers\43541 |9 21683 | |
| 701 | 1 | |a Fedotkin |b A. Yu. |c physicist |c engineer of Tomsk Polytechnic University |f 1994- |g Aleksandr Yurjevich |3 (RuTPU)RU\TPU\pers\44107 | |
| 701 | 1 | |a Bolbasov |b E. N. |c physicist |c Senior Researcher at Tomsk Polytechnic University, Candidate of Technical Sciences |f 1981- |g Evgeny Nikolaevich |3 (RuTPU)RU\TPU\pers\30857 |9 15103 | |
| 701 | 1 | |a Kozelskaya |b A. I. |c physicist |c Researcher at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences |f 1985- |g Anna Ivanovna |3 (RuTPU)RU\TPU\pers\39663 |9 21044 | |
| 701 | 1 | |a Buldakov |b M. A. |g Mikhail Aleksandrovich | |
| 701 | 1 | |a Evtina |b A. A. |g Anastasiya Alekseevna | |
| 701 | 1 | |a Cherdyntseva |b N. V. |g Nadezhda Viktorovna | |
| 701 | 1 | |a Rutkowski |b S. |c chemist |c Research Engineer, Tomsk Polytechnic University, Ph.D |f 1981- |g Sven |3 (RuTPU)RU\TPU\pers\46773 |9 22409 | |
| 701 | 1 | |a Tverdokhlebov |b S. I. |c physicist |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science |f 1961- |g Sergei Ivanovich |3 (RuTPU)RU\TPU\pers\30855 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа ядерных технологий |b Научно-образовательный центр Б. П. Вейнберга |3 (RuTPU)RU\TPU\col\23561 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа ядерных технологий |b Лаборатория плазменных гибридных систем |3 (RuTPU)RU\TPU\col\23381 |
| 801 | 0 | |a RU |b 63413507 |c 20230116 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.colsurfa.2022.129464 | |
| 942 | |c CF | ||