Enhancing the contrast of the grey-scale image based on meta-heuristic optimization algorithm

מידע ביבליוגרפי
Parent link:Soft Computing
Vol. 26, iss. 13.— 2022.— [P. 6293–6315]
מחבר תאגידי: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
מחברים אחרים: Ali H. Kh. Hussain Khan, Shameem A. Ahmed, Suman K. Kumar, Seyedali M. Mirjalili, Oliva Navarro D. A. Diego Alberto, Ram S. Sarkar
סיכום:Title screen
Image contrast enhancement (ICE) is an important step in image processing and analysis as the quality of an image plays a pivotal role in human understanding. Moreover, contrast is considered a key aspect for the assessment of picture quality. Incomplete beta function (IBF) is one of the widely used transformations and histogram equalization (HE) is also one of the most popular methods used for this task. However, HE has some limitations as the local contrast of an image cannot be uniformly enhanced. In the present work, a contrast enhancement method is proposed for grey-scale images based on a recent socio-inspired meta-heuristic called political optimizer (PO). The PO algorithm follows the multi-phased process of politics. The exploitative capability of PO is improved by combining it with the adaptive β�-hill climbing (Aβ�HC) which is regarded as one of the best local search techniques. The hybridization of these two algorithms is then used to find the optimal values of pixels which can intensify the hidden characteristic of the low-contrast images. The proposed algorithm is tested over a publicly available Kodak image dataset along with some standard images and evaluated in terms of standard metrics. The experimental results demonstrate that the proposed method can successfully outperform many existing methods considered here for comparison.
שפה:אנגלית
יצא לאור: 2022
נושאים:
גישה מקוונת:https://doi.org/10.1007/s00500-022-07033-8
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668646

MARC

LEADER 00000naa0a2200000 4500
001 668646
005 20250224163530.0
035 |a (RuTPU)RU\TPU\network\39883 
035 |a RU\TPU\network\39466 
090 |a 668646 
100 |a 20230116d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drcn ---uucaa 
182 0 |a b 
200 1 |a Enhancing the contrast of the grey-scale image based on meta-heuristic optimization algorithm  |f H. Kh. Ali, A. Shameem, K. Suman [et al.] 
203 |c electronic 
300 |a Title screen 
330 |a Image contrast enhancement (ICE) is an important step in image processing and analysis as the quality of an image plays a pivotal role in human understanding. Moreover, contrast is considered a key aspect for the assessment of picture quality. Incomplete beta function (IBF) is one of the widely used transformations and histogram equalization (HE) is also one of the most popular methods used for this task. However, HE has some limitations as the local contrast of an image cannot be uniformly enhanced. In the present work, a contrast enhancement method is proposed for grey-scale images based on a recent socio-inspired meta-heuristic called political optimizer (PO). The PO algorithm follows the multi-phased process of politics. The exploitative capability of PO is improved by combining it with the adaptive β�-hill climbing (Aβ�HC) which is regarded as one of the best local search techniques. The hybridization of these two algorithms is then used to find the optimal values of pixels which can intensify the hidden characteristic of the low-contrast images. The proposed algorithm is tested over a publicly available Kodak image dataset along with some standard images and evaluated in terms of standard metrics. The experimental results demonstrate that the proposed method can successfully outperform many existing methods considered here for comparison. 
461 |t Soft Computing 
463 |t Vol. 26, iss. 13  |v [P. 6293–6315]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a meta-heuristic 
610 1 |a image contrast enhancement 
610 1 |a political optimizer 
610 1 |a adaptive β-hill climbing 
610 1 |a optimization 
610 1 |a algorithm 
610 1 |a метаэвристика 
610 1 |a контрастность 
610 1 |a изображения 
701 1 |a Ali  |b H. Kh.  |g Hussain Khan 
701 1 |a Shameem  |b A.  |g Ahmed 
701 1 |a Suman  |b K.  |g Kumar 
701 1 |a Seyedali  |b M.  |g Mirjalili 
701 1 |a Oliva Navarro  |b D. A.  |c specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Diego Alberto  |3 (RuTPU)RU\TPU\pers\37366 
701 1 |a Ram  |b S.  |g Sarkar 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 0 |a RU  |b 63413507  |c 20230116  |g RCR 
856 4 |u https://doi.org/10.1007/s00500-022-07033-8 
942 |c CF