Optimized machine learning models for natural fractures prediction using conventional well logs

Detalles Bibliográficos
Parent link:Fuel
Vol. 326.— 2022.— [124952, 19 p.]
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение нефтегазового дела
Otros Autores: Tabasi S. Somayeh, Tehrani P. S. Pezhman Soltani, Rajabi M. Meysam, Wood D. A. David, Davoodi Sh. Shadfar, Ghorbani H. Hamzeh, Mohamadian N. Nima, Ahmadi A. M. Alvar Mehdi
Sumario:Title screen
Identifying and characterizing natural fractures is essential for understanding fluid flow and drainage in many oil and gas reservoirs, particularly carbonate. The presence of fractures often enhances fluid recovery but substantially complicates reservoir flow performance. Information from cores and formation imaging logs is constrained by their availability and cost. Reliably predicting fracture density using petrophysical logs and machine learning (ML) is therefore a desirable objective for fields with reservoirs displaying intermittent and sparsely distributed fractures. In the first step, Hybrid ML-optimizer models are developed and applied to a large, high- resolution, dataset (10 petrophysical variables; 3395 data records; ∼12% of the records displaying fractures) from the Asmari fractured carbonate reservoir in Iran's Marun oil and gas field. Fracture density measured with a formation image log from one well is predicted by supervised learning using five hybrid models. The models use six of the ten petrophysical variables considered, based on feature selection, to predict fracture density.
The selected variables are: corrected gamma ray (CGR), neutron porosity (NPHI); compressional sonic transition time (DT); interpreted sonic porosity (PHIS); bulk formation density (RHOB); and, the photoelectric absorption factor (PEF). The models enhance the performance of distance-weighted K-nearest neighbor (DWKNN) and neural network (MLP) with firefly and artificial bee colony optimizers. The novel firefly-KNN model achieves higher fracture density prediction accuracy than the other models. It is further refined by executing it in two layers: the first layer detects fractures; the second layer predicts fracture density. The double-layer-firefly-KNN model (DL-FF-DWKNN) achieves excellent prediction accuracy of fracture density for the Asmari carbonate (Precision = 99%, Recall = 97%, and F1-score = 98%). This correlation-free data matching technique substantially outperforms the correlation-dependent neural network models evaluated for this dataset with sparsely distributed fractured zones. The generalizability of the developed algorithms is tested with datasets from two other Marun field wells achieving prediction results that confirm high accuracy in fracture detection and prediction of fracture density (FVDC).
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2022
Materias:
Acceso en línea:https://doi.org/10.1016/j.fuel.2022.124952
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668642

MARC

LEADER 00000naa0a2200000 4500
001 668642
005 20250910102901.0
035 |a (RuTPU)RU\TPU\network\39879 
035 |a RU\TPU\network\39321 
090 |a 668642 
100 |a 20230116d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Optimized machine learning models for natural fractures prediction using conventional well logs  |f S. Tabasi, P. S. Tehrani, M. Rajabi [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 52 tit.] 
330 |a Identifying and characterizing natural fractures is essential for understanding fluid flow and drainage in many oil and gas reservoirs, particularly carbonate. The presence of fractures often enhances fluid recovery but substantially complicates reservoir flow performance. Information from cores and formation imaging logs is constrained by their availability and cost. Reliably predicting fracture density using petrophysical logs and machine learning (ML) is therefore a desirable objective for fields with reservoirs displaying intermittent and sparsely distributed fractures. In the first step, Hybrid ML-optimizer models are developed and applied to a large, high- resolution, dataset (10 petrophysical variables; 3395 data records; ∼12% of the records displaying fractures) from the Asmari fractured carbonate reservoir in Iran's Marun oil and gas field. Fracture density measured with a formation image log from one well is predicted by supervised learning using five hybrid models. The models use six of the ten petrophysical variables considered, based on feature selection, to predict fracture density. 
330 |a The selected variables are: corrected gamma ray (CGR), neutron porosity (NPHI); compressional sonic transition time (DT); interpreted sonic porosity (PHIS); bulk formation density (RHOB); and, the photoelectric absorption factor (PEF). The models enhance the performance of distance-weighted K-nearest neighbor (DWKNN) and neural network (MLP) with firefly and artificial bee colony optimizers. The novel firefly-KNN model achieves higher fracture density prediction accuracy than the other models. It is further refined by executing it in two layers: the first layer detects fractures; the second layer predicts fracture density. The double-layer-firefly-KNN model (DL-FF-DWKNN) achieves excellent prediction accuracy of fracture density for the Asmari carbonate (Precision = 99%, Recall = 97%, and F1-score = 98%). This correlation-free data matching technique substantially outperforms the correlation-dependent neural network models evaluated for this dataset with sparsely distributed fractured zones. The generalizability of the developed algorithms is tested with datasets from two other Marun field wells achieving prediction results that confirm high accuracy in fracture detection and prediction of fracture density (FVDC). 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Fuel 
463 |t Vol. 326  |v [124952, 19 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a quantified fracture density 
610 1 |a petrophysical data matching 
610 1 |a two-layer nearest-neighbor algorithm 
610 1 |a borehole imaging log 
610 1 |a fractured carbonate reservoir 
610 1 |a sparse fracture distribution 
610 1 |a плотность 
610 1 |a трещины 
610 1 |a петрофизические данные 
610 1 |a карбонатные коллекторы 
701 1 |a Tabasi  |b S.  |g Somayeh 
701 1 |a Tehrani  |b P. S.  |g Pezhman Soltani 
701 1 |a Rajabi  |b M.  |g Meysam 
701 1 |a Wood  |b D. A.  |g David 
701 1 |a Davoodi  |b Sh.  |c specialist in the field of petroleum engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1990-  |g Shadfar  |3 (RuTPU)RU\TPU\pers\46542  |9 22200 
701 1 |a Ghorbani  |b H.  |g Hamzeh 
701 1 |a Mohamadian  |b N.  |g Nima 
701 1 |a Ahmadi  |b A. M.  |g Alvar Mehdi 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение нефтегазового дела  |3 (RuTPU)RU\TPU\col\23546 
801 0 |a RU  |b 63413507  |c 20230116  |g RCR 
856 4 |u https://doi.org/10.1016/j.fuel.2022.124952 
942 |c CF