Generalised point vortices on a plane

التفاصيل البيبلوغرافية
Parent link:Physics Letters B
Vol. 829.— 2022.— [137119, 5 p.]
المؤلف الرئيسي: Galajinsky A. V. Anton Vladimirovich
مؤلف مشترك: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
الملخص:Title screen
A three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications.
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:http://earchive.tpu.ru/handle/11683/74934
https://doi.org/10.1016/j.physletb.2022.137119
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668596

MARC

LEADER 00000naa0a2200000 4500
001 668596
005 20250225162838.0
035 |a (RuTPU)RU\TPU\network\39833 
035 |a RU\TPU\network\37160 
090 |a 668596 
100 |a 20230110d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a arcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Generalised point vortices on a plane  |f A. V. Galajinsky 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References.: 17 tit.] 
330 |a A three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications. 
461 |t Physics Letters B 
463 |t Vol. 829  |v [137119, 5 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a point vortices 
610 1 |a integrable systems 
610 1 |a scale symmetry 
610 1 |a supersymmetry 
610 1 |a точечные вихри 
610 1 |a интегрируемые системы 
610 1 |a масштабность 
610 1 |a симметрия 
610 1 |a суперсимметрия 
700 1 |a Galajinsky  |b A. V.  |c Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)   |c Professor of the TPU  |f 1971-  |g Anton Vladimirovich  |3 (RuTPU)RU\TPU\pers\27878  |9 12894 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 0 |a RU  |b 63413507  |c 20230331  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/74934 
856 4 |u https://doi.org/10.1016/j.physletb.2022.137119 
942 |c CF