Effect of gas pressure and temperature on the regimes of liquid droplet collisions

Bibliographic Details
Parent link:Interfacial Phenomena and Heat Transfer
Vol. 10, iss. 1.— 2022.— [P. 25-46]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова), Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Tkachenko P. P. Pavel Petrovich, Islamova A. G. Anastasiya Gomilievna, Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen
The paper presents experimental research findings for the critical conditions and integral characteristics of secondary atomization of liquid droplets when varying the gas medium pressure (0.9-5 atm) and temperature (20-200°C). The experiments were conducted with water droplets with initial temperatures of 20 and 80°C to investigate the contribution of heating the liquid and its evaporation to the interaction conditions and characteristics. We varied the impact angles, sizes, and velocities of droplets in a gas medium. Typical collision regimes were identified: bounce, coalescence, separation, and disruption. Liquid droplet collision regime maps using the dimensionless linear parameter of interaction and Weber number were produced. Specific aspects of droplet collisions were established at different pressures and temperatures of the gas medium. The ratios of liquid surface areas before and after droplet disruption were calculated. The findings were compared to known data of other authors. Conditions were shown under which the gas pressure and temperature significantly affect droplet collision regimes and transition boundaries between them, as well as droplet collision outcomes.
Language:English
Published: 2022
Subjects:
Online Access:http://dx.doi.org/10.1615/InterfacPhenomHeatTransfer.2022044027
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668582

MARC

LEADER 00000naa0a2200000 4500
001 668582
005 20250225165640.0
035 |a (RuTPU)RU\TPU\network\39819 
035 |a RU\TPU\network\39815 
090 |a 668582 
100 |a 20230110d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of gas pressure and temperature on the regimes of liquid droplet collisions  |f P. P. Tkachenko, A. G. Islamova, N. E. Shlegel, P. A. Strizhak 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 50 tit.] 
330 |a The paper presents experimental research findings for the critical conditions and integral characteristics of secondary atomization of liquid droplets when varying the gas medium pressure (0.9-5 atm) and temperature (20-200°C). The experiments were conducted with water droplets with initial temperatures of 20 and 80°C to investigate the contribution of heating the liquid and its evaporation to the interaction conditions and characteristics. We varied the impact angles, sizes, and velocities of droplets in a gas medium. Typical collision regimes were identified: bounce, coalescence, separation, and disruption. Liquid droplet collision regime maps using the dimensionless linear parameter of interaction and Weber number were produced. Specific aspects of droplet collisions were established at different pressures and temperatures of the gas medium. The ratios of liquid surface areas before and after droplet disruption were calculated. The findings were compared to known data of other authors. Conditions were shown under which the gas pressure and temperature significantly affect droplet collision regimes and transition boundaries between them, as well as droplet collision outcomes. 
461 |t Interfacial Phenomena and Heat Transfer 
463 |t Vol. 10, iss. 1  |v [P. 25-46]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a droplet collisions 
610 1 |a interaction regimes 
610 1 |a pressure and temperature of gas medium 
610 1 |a collision regime maps 
610 1 |a disruption 
610 1 |a satellite droplets 
701 1 |a Tkachenko  |b P. P.  |g Pavel Petrovich 
701 1 |a Islamova  |b A. G.  |c specialist in the field of thermal engineering  |c Engineer of Tomsk Polytechnic University  |f 1993-  |g Anastasiya Gomilievna  |3 (RuTPU)RU\TPU\pers\37306 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 0 |a RU  |b 63413507  |c 20230110  |g RCR 
856 4 |u http://dx.doi.org/10.1615/InterfacPhenomHeatTransfer.2022044027 
942 |c CF