Effect of Liquid Properties on the Characteristics of Collisions between Droplets and Solid Particles

Bibliographic Details
Parent link:Applied Sciences
Vol. 12, iss. 21.— 2022.— [10747, 19 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова), Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Other Authors: Islamova A. G. Anastasiya Gomilievna, Tkachenko P. P. Pavel Petrovich, Shlegel N. E. Nikita Evgenjevich, Kuznetsov G. V. Geny Vladimirovich
Summary:Title screen
The characteristics of the collisions of droplets with solid particles (52,100 steel) were experimentally studied when varying the key liquid properties: viscosity (1–6.3 mPa·s), surface tension (72.69–36.1 mN/m) and interfacial (liquid-liquid) tension (3.41–42.57 mN/m). Distilled water, aqueous solutions of glycerol, surfactants and diesel emulsions were used. The experimental conditions corresponded to the following ranges: Weber number 5–450, Ohnesorge number 0.001–0.03, Reynolds number 0.1–1000, capillary number 0.01–0.3. Droplet-particle collision regimes (agglomeration, stretching separation) were identified and the characteristics of secondary liquid fragments (size, number) were determined. Droplet-particle interaction regime maps in the We(Oh) and Re(Ca) systems were constructed. Equations describing the transition boundaries between the droplet-particle interaction regimes were obtained. The equations take the form: We = a · Oh + c. For the conditions of the droplet-particle interaction, the relationship We = 2214 · Oh + 49.214 was obtained. For the interaction with a substrate: We = 1.0145 · Oh + 0.0049. The experimental results were compared with the characteristics of collisions of liquid droplets with each other. Differences in the characteristics of secondary atomization of droplets as a result of collisions were identified. Guidelines were provided for applying the research findings to the development of liquid droplet secondary atomization technologies in gas-vapor-droplet applications.
Published: 2022
Subjects:
Online Access:https://doi.org/10.3390/app122110747
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668521

MARC

LEADER 00000naa0a2200000 4500
001 668521
005 20250303113611.0
035 |a (RuTPU)RU\TPU\network\39748 
035 |a RU\TPU\network\39717 
090 |a 668521 
100 |a 20221221d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of Liquid Properties on the Characteristics of Collisions between Droplets and Solid Particles  |f A. G. Islamova, P. P. Tkachenko, N. E. Shlegel, G. V. Kuznetsov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 57 tit.] 
330 |a The characteristics of the collisions of droplets with solid particles (52,100 steel) were experimentally studied when varying the key liquid properties: viscosity (1–6.3 mPa·s), surface tension (72.69–36.1 mN/m) and interfacial (liquid-liquid) tension (3.41–42.57 mN/m). Distilled water, aqueous solutions of glycerol, surfactants and diesel emulsions were used. The experimental conditions corresponded to the following ranges: Weber number 5–450, Ohnesorge number 0.001–0.03, Reynolds number 0.1–1000, capillary number 0.01–0.3. Droplet-particle collision regimes (agglomeration, stretching separation) were identified and the characteristics of secondary liquid fragments (size, number) were determined. Droplet-particle interaction regime maps in the We(Oh) and Re(Ca) systems were constructed. Equations describing the transition boundaries between the droplet-particle interaction regimes were obtained. The equations take the form: We = a · Oh + c. For the conditions of the droplet-particle interaction, the relationship We = 2214 · Oh + 49.214 was obtained. For the interaction with a substrate: We = 1.0145 · Oh + 0.0049. The experimental results were compared with the characteristics of collisions of liquid droplets with each other. Differences in the characteristics of secondary atomization of droplets as a result of collisions were identified. Guidelines were provided for applying the research findings to the development of liquid droplet secondary atomization technologies in gas-vapor-droplet applications. 
461 |t Applied Sciences 
463 |t Vol. 12, iss. 21  |v [10747, 19 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a liquid droplets 
610 1 |a solid particles 
610 1 |a collisions 
610 1 |a interaction regimes 
610 1 |a liquid properties 
610 1 |a child droplets 
701 1 |a Islamova  |b A. G.  |c specialist in the field of thermal engineering  |c Engineer of Tomsk Polytechnic University  |f 1993-  |g Anastasiya Gomilievna  |3 (RuTPU)RU\TPU\pers\37306 
701 1 |a Tkachenko  |b P. P.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1996-  |g Pavel Petrovich  |3 (RuTPU)RU\TPU\pers\46849 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675 
701 1 |a Kuznetsov  |b G. V.  |c Specialist in the field of heat power energy  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1949-  |g Geny Vladimirovich  |3 (RuTPU)RU\TPU\pers\31891  |9 15963 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 0 |a RU  |b 63413507  |c 20221221  |g RCR 
856 4 |u https://doi.org/10.3390/app122110747 
942 |c CF