Effect of Liquid Properties on the Characteristics of Collisions between Droplets and Solid Particles
| Parent link: | Applied Sciences Vol. 12, iss. 21.— 2022.— [10747, 19 p.] |
|---|---|
| Corporate Authors: | , |
| Other Authors: | , , , |
| Summary: | Title screen The characteristics of the collisions of droplets with solid particles (52,100 steel) were experimentally studied when varying the key liquid properties: viscosity (1–6.3 mPa·s), surface tension (72.69–36.1 mN/m) and interfacial (liquid-liquid) tension (3.41–42.57 mN/m). Distilled water, aqueous solutions of glycerol, surfactants and diesel emulsions were used. The experimental conditions corresponded to the following ranges: Weber number 5–450, Ohnesorge number 0.001–0.03, Reynolds number 0.1–1000, capillary number 0.01–0.3. Droplet-particle collision regimes (agglomeration, stretching separation) were identified and the characteristics of secondary liquid fragments (size, number) were determined. Droplet-particle interaction regime maps in the We(Oh) and Re(Ca) systems were constructed. Equations describing the transition boundaries between the droplet-particle interaction regimes were obtained. The equations take the form: We = a · Oh + c. For the conditions of the droplet-particle interaction, the relationship We = 2214 · Oh + 49.214 was obtained. For the interaction with a substrate: We = 1.0145 · Oh + 0.0049. The experimental results were compared with the characteristics of collisions of liquid droplets with each other. Differences in the characteristics of secondary atomization of droplets as a result of collisions were identified. Guidelines were provided for applying the research findings to the development of liquid droplet secondary atomization technologies in gas-vapor-droplet applications. |
| Published: |
2022
|
| Subjects: | |
| Online Access: | https://doi.org/10.3390/app122110747 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668521 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 668521 | ||
| 005 | 20250303113611.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\39748 | ||
| 035 | |a RU\TPU\network\39717 | ||
| 090 | |a 668521 | ||
| 100 | |a 20221221d2022 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a CH | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Effect of Liquid Properties on the Characteristics of Collisions between Droplets and Solid Particles |f A. G. Islamova, P. P. Tkachenko, N. E. Shlegel, G. V. Kuznetsov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 57 tit.] | ||
| 330 | |a The characteristics of the collisions of droplets with solid particles (52,100 steel) were experimentally studied when varying the key liquid properties: viscosity (1–6.3 mPa·s), surface tension (72.69–36.1 mN/m) and interfacial (liquid-liquid) tension (3.41–42.57 mN/m). Distilled water, aqueous solutions of glycerol, surfactants and diesel emulsions were used. The experimental conditions corresponded to the following ranges: Weber number 5–450, Ohnesorge number 0.001–0.03, Reynolds number 0.1–1000, capillary number 0.01–0.3. Droplet-particle collision regimes (agglomeration, stretching separation) were identified and the characteristics of secondary liquid fragments (size, number) were determined. Droplet-particle interaction regime maps in the We(Oh) and Re(Ca) systems were constructed. Equations describing the transition boundaries between the droplet-particle interaction regimes were obtained. The equations take the form: We = a · Oh + c. For the conditions of the droplet-particle interaction, the relationship We = 2214 · Oh + 49.214 was obtained. For the interaction with a substrate: We = 1.0145 · Oh + 0.0049. The experimental results were compared with the characteristics of collisions of liquid droplets with each other. Differences in the characteristics of secondary atomization of droplets as a result of collisions were identified. Guidelines were provided for applying the research findings to the development of liquid droplet secondary atomization technologies in gas-vapor-droplet applications. | ||
| 461 | |t Applied Sciences | ||
| 463 | |t Vol. 12, iss. 21 |v [10747, 19 p.] |d 2022 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a liquid droplets | |
| 610 | 1 | |a solid particles | |
| 610 | 1 | |a collisions | |
| 610 | 1 | |a interaction regimes | |
| 610 | 1 | |a liquid properties | |
| 610 | 1 | |a child droplets | |
| 701 | 1 | |a Islamova |b A. G. |c specialist in the field of thermal engineering |c Engineer of Tomsk Polytechnic University |f 1993- |g Anastasiya Gomilievna |3 (RuTPU)RU\TPU\pers\37306 | |
| 701 | 1 | |a Tkachenko |b P. P. |c specialist in the field of heat and power engineering |c Research Engineer of Tomsk Polytechnic University |f 1996- |g Pavel Petrovich |3 (RuTPU)RU\TPU\pers\46849 | |
| 701 | 1 | |a Shlegel |b N. E. |c specialist in the field of heat and power engineering |c Research Engineer of Tomsk Polytechnic University |f 1995- |g Nikita Evgenjevich |3 (RuTPU)RU\TPU\pers\46675 | |
| 701 | 1 | |a Kuznetsov |b G. V. |c Specialist in the field of heat power energy |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences |f 1949- |g Geny Vladimirovich |3 (RuTPU)RU\TPU\pers\31891 |9 15963 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа энергетики |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) |3 (RuTPU)RU\TPU\col\23504 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 0 | |a RU |b 63413507 |c 20221221 |g RCR | |
| 856 | 4 | |u https://doi.org/10.3390/app122110747 | |
| 942 | |c CF | ||