A novel low-energy approach to leucoxene concentrate desiliconization by ammonium bifluoride solutions

Dettagli Bibliografici
Parent link:Chemical technology and biotechnology
Vol. 98, iss. 3.— 2023.— [P. 726-733]
Ente Autore: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение ядерно-топливного цикла
Altri autori: Smorokov A. A. Andrey Arkadievich, Kantaev A. S. Aleksandr Sergeevich, Bryankin D. V. Daniel Valerievich, Miklashevich A. Anna, Kamarou M. Maksim, Romanovski V. Valentin
Riassunto:Title screen
BACKGROUND Despite the large reserves of titanium ores, their treatment by basic approaches to obtain titanium products is not always economically feasible due to various factors. One of these problems is the high content of silicon in the ores. RESULTS The paper considers the desiliconization of a leucoxene concentrate with an aqueous solution of ammonium bifluoride. It was found that at 80 °C the main impurities, such as silicon and iron, pass into solution in the form of corresponding ammonium–fluorine complex compounds. CONCLUSIONS The degree of desiliconization was up to 99%. Aluminium reacts with ammonium bifluoride, but is almost not leached into solution due to its low solubility. Titanium does not react due to its relatively higher reaction Gibbs energy among other metals in reaction with ammonium bifluoride. The content of titanium oxide in the calcined leaching residue was 85.52 wt%. The resulting residue corresponds to the raw material used in industry for the production of titanium dioxide pigment or titanium metal by the chlorine method. Iron and silicon can be precipitated from the leaching solution. Furthermore, the resulting filtrate can be evaporated in order to regenerate and reuse ammonium bifluoride. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Lingua:inglese
Pubblicazione: 2023
Soggetti:
Accesso online:https://doi.org/10.1002/jctb.7277
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668461

MARC

LEADER 00000naa0a2200000 4500
001 668461
005 20250305163825.0
035 |a (RuTPU)RU\TPU\network\39686 
090 |a 668461 
100 |a 20221206d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a A novel low-energy approach to leucoxene concentrate desiliconization by ammonium bifluoride solutions  |f A. A. Smorokov, A. S. Kantaev, D. V. Bryankin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a BACKGROUND Despite the large reserves of titanium ores, their treatment by basic approaches to obtain titanium products is not always economically feasible due to various factors. One of these problems is the high content of silicon in the ores. RESULTS The paper considers the desiliconization of a leucoxene concentrate with an aqueous solution of ammonium bifluoride. It was found that at 80 °C the main impurities, such as silicon and iron, pass into solution in the form of corresponding ammonium–fluorine complex compounds. CONCLUSIONS The degree of desiliconization was up to 99%. Aluminium reacts with ammonium bifluoride, but is almost not leached into solution due to its low solubility. Titanium does not react due to its relatively higher reaction Gibbs energy among other metals in reaction with ammonium bifluoride. The content of titanium oxide in the calcined leaching residue was 85.52 wt%. The resulting residue corresponds to the raw material used in industry for the production of titanium dioxide pigment or titanium metal by the chlorine method. Iron and silicon can be precipitated from the leaching solution. Furthermore, the resulting filtrate can be evaporated in order to regenerate and reuse ammonium bifluoride. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI). 
461 |t Chemical technology and biotechnology 
463 |t Vol. 98, iss. 3  |v [P. 726-733]  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a ammonium bifluoride 
610 1 |a leucoxene concentrate 
610 1 |a desiliconization 
610 1 |a hydrometallurgy 
610 1 |a бифторид аммония 
610 1 |a обескремнивание 
610 1 |a гидрометаллургия 
701 1 |a Smorokov  |b A. A.  |c chemical engineer  |c Senior Lecturer, Associate Scientist of Tomsk Polytechnic University  |f 1993-  |g Andrey Arkadievich  |3 (RuTPU)RU\TPU\pers\33850  |9 17439 
701 1 |a Kantaev  |b A. S.  |c chemical engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences  |f 1981-  |g Aleksandr Sergeevich  |3 (RuTPU)RU\TPU\pers\32622  |9 16534 
701 1 |a Bryankin  |b D. V.  |c Chemist  |c laboratory assistant researcher of Tomsk Polytechnic University  |f 2000-  |g Daniel Valerievich  |3 (RuTPU)RU\TPU\pers\47200 
701 1 |a Miklashevich  |b A.  |g Anna 
701 1 |a Kamarou  |b M.  |g Maksim 
701 1 |a Romanovski  |b V.  |g Valentin 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение ядерно-топливного цикла  |3 (RuTPU)RU\TPU\col\23554 
801 0 |a RU  |b 63413507  |c 20230321  |g RCR 
856 4 |u https://doi.org/10.1002/jctb.7277 
942 |c CF