Theoretical and Experimental Studies of Al-Impurity Effect on the Hydrogenation Behavior of Mg

Detalhes bibliográficos
Parent link:Materials
Vol. 15, iss. 22.— 2022.— [8126, 12 p.]
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Outros Autores: Lyu Jinzhe, Elman R. R. Roman Romanovich, Svyatkin L. A. Leonid Aleksandrovich, Kudiyarov V. N. Victor Nikolaevich
Resumo:Title screen
In this paper, we study the influence of hydrogen concentration on the binding energies in magnesium hydrides. The impact of aluminum atom addition on the hydrogenation behavior of magnesium was theoretically and experimentally defined. Doping Al into the Mg lattice allows the uniform hydrogen distribution in both the fcc and bcc Mg lattice at a low hydrogen concentration (H:Mg < 0.875) to be more energetically favorable. In addition, this leads to bcc Mg lattice formation with a uniform hydrogen distribution, which is more energetically favorable than the fcc Mg lattice when the atomic ratio H:Mg is near 0.875. In addition, compared with the pure Mg, in the Al-doped Mg, the phase transition from the hcp to the fcc structure with a uniform distribution of H atoms induces less elastic strain. Thus, the uniform hydrogen distribution is more favorable, leading to faster hydrogen absorption. Pure magnesium is characterized by cluster-like hydrogen distribution, which decreases the hydrogen diffusion rate. This leads to the accumulation of a higher hydrogen concentration in magnesium with aluminum compared with pure magnesium under the same hydrogenation regimes, which is confirmed experimentally.
Publicado em: 2022
Assuntos:
Acesso em linha:http://earchive.tpu.ru/handle/11683/74815
https://doi.org/10.3390/ma15228126
Formato: Recurso Electrónico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668418

MARC

LEADER 00000naa0a2200000 4500
001 668418
005 20250310110117.0
035 |a (RuTPU)RU\TPU\network\39643 
035 |a RU\TPU\network\32855 
090 |a 668418 
100 |a 20221123d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Theoretical and Experimental Studies of Al-Impurity Effect on the Hydrogenation Behavior of Mg  |f Lyu Jinzhe, R. R. Elman, L. A. Svyatkin, V. N. Kudiyarov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 43 tit.] 
330 |a In this paper, we study the influence of hydrogen concentration on the binding energies in magnesium hydrides. The impact of aluminum atom addition on the hydrogenation behavior of magnesium was theoretically and experimentally defined. Doping Al into the Mg lattice allows the uniform hydrogen distribution in both the fcc and bcc Mg lattice at a low hydrogen concentration (H:Mg < 0.875) to be more energetically favorable. In addition, this leads to bcc Mg lattice formation with a uniform hydrogen distribution, which is more energetically favorable than the fcc Mg lattice when the atomic ratio H:Mg is near 0.875. In addition, compared with the pure Mg, in the Al-doped Mg, the phase transition from the hcp to the fcc structure with a uniform distribution of H atoms induces less elastic strain. Thus, the uniform hydrogen distribution is more favorable, leading to faster hydrogen absorption. Pure magnesium is characterized by cluster-like hydrogen distribution, which decreases the hydrogen diffusion rate. This leads to the accumulation of a higher hydrogen concentration in magnesium with aluminum compared with pure magnesium under the same hydrogenation regimes, which is confirmed experimentally. 
461 |t Materials 
463 |t Vol. 15, iss. 22  |v [8126, 12 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a magnesium 
610 1 |a aluminum 
610 1 |a impurity 
610 1 |a magnesium hydride 
610 1 |a thin film 
610 1 |a hydrogen 
610 1 |a first-principle calculations 
610 1 |a магний 
610 1 |a алюминий 
610 1 |a примеси 
610 1 |a гидрид магния 
610 1 |a тонкие пленки 
610 1 |a водород 
701 0 |a Lyu Jinzhe  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1993-  |3 (RuTPU)RU\TPU\pers\45439 
701 1 |a Elman  |b R. R.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Roman Romanovich  |3 (RuTPU)RU\TPU\pers\47123 
701 1 |a Svyatkin  |b L. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1988-  |g Leonid Aleksandrovich  |3 (RuTPU)RU\TPU\pers\34216  |9 17747 
701 1 |a Kudiyarov  |b V. N.   |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Victor Nikolaevich  |3 (RuTPU)RU\TPU\pers\30836  |9 15083 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
801 0 |a RU  |b 63413507  |c 20230320  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/74815 
856 4 |u https://doi.org/10.3390/ma15228126 
942 |c CF