Laser-Engineered Multifunctional Graphene–Glass Electronics

Bibliografiset tiedot
Parent link:Advanced Materials
Vol. 34, iss. 43.— 2022.— [2206877, 10 p.]
Yhteisötekijä: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Muut tekijät: Rodriguez (Rodriges) Contreras R. D. Raul David, Fatkullin M. I. Maksim Ilgizovich, Garcia Balza A. S. Aura Samid, Petrov I. S. Iljya Sergeevich, Averkiev A. A. Andrey Alekseevich, Lipovka A. A. Anna Anatolyevna, Liliang Lu, Shchadenko S. V. Sergey Vladimirovich, Wang R. Ranran, Jing Sun, Qiu Li, Xin Jia, Chong Cheng, Kanoun O. Olfa, Sheremet E. S. Evgeniya Sergeevna
Yhteenveto:Title screen
Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq−1) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID/IG = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10−9 m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.
Kieli:englanti
Julkaistu: 2022
Aiheet:
Linkit:https://doi.org/10.1002/adma.202206877
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668381

MARC

LEADER 00000naa0a2200000 4500
001 668381
005 20250918131307.0
035 |a (RuTPU)RU\TPU\network\39606 
035 |a RU\TPU\network\36117 
090 |a 668381 
100 |a 20221110d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Laser-Engineered Multifunctional Graphene–Glass Electronics  |f R. D. Rodriguez (Rodriges) Contreras, M. I. Fatkullin, A. S. Garcia Balza [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 48 tit.] 
330 |a Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq−1) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID/IG = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10−9 m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h. 
461 |t Advanced Materials 
463 |t Vol. 34, iss. 43  |v [2206877, 10 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a conductive nanostructures 
610 1 |a glass electronics 
610 1 |a graphene heaters 
610 1 |a graphene oxide 
610 1 |a laser-engineered nanostructures 
610 1 |a laser-induced backward transfer 
610 1 |a sensors 
610 1 |a наноструктуры 
610 1 |a графеновые технологии 
610 1 |a оксид графена 
610 1 |a наноструктуры 
610 1 |a лазерно-индуцированные процессы 
610 1 |a датчики 
701 1 |a Rodriguez (Rodriges) Contreras  |b R. D.  |c Venezuelan physicist, doctor of science  |c Professor of Tomsk Polytechnic University  |f 1982-  |g Raul David  |3 (RuTPU)RU\TPU\pers\39942  |9 21179 
701 1 |a Fatkullin  |b M. I.  |c chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Maksim Ilgizovich  |3 (RuTPU)RU\TPU\pers\47264  |9 22844 
701 1 |a Garcia Balza  |b A. S.  |c specialist in the field of petroleum engineering  |c Assistant of the Department of Tomsk Polytechnic University  |f 1987-  |g Aura Samid  |3 (RuTPU)RU\TPU\pers\41139 
701 1 |a Petrov  |b I. S.  |c physicist, specialist in the field of nuclear technologies  |c Junior Researcher of the Tomsk Polytechnic University  |f 1994-  |g Iljya Sergeevich  |3 (RuTPU)RU\TPU\pers\46879 
701 1 |a Averkiev  |b A. A.  |c Specialist in the field of electronics  |c Research Engineer of Tomsk Polytechnic University  |f 1996-  |g Andrey Alekseevich  |3 (RuTPU)RU\TPU\pers\47130  |9 22723 
701 1 |a Lipovka  |b A. A.  |c chemist  |c Associate Scientist of Tomsk Polytechnic University  |f 1993-  |g Anna Anatolyevna  |3 (RuTPU)RU\TPU\pers\44078  |9 21753 
701 0 |a Liliang Lu 
701 1 |a Shchadenko  |b S. V.  |c an expert in the field of electronics  |c Assistant Tomsk Polytechnic University  |f 1981-  |g Sergey Vladimirovich  |3 (RuTPU)RU\TPU\pers\34922 
701 1 |a Wang  |b R.  |g Ranran 
701 0 |a Jing Sun 
701 0 |a Qiu Li 
701 0 |a Xin Jia 
701 0 |a Chong Cheng 
701 1 |a Kanoun  |b O.  |g Olfa 
701 1 |a Sheremet  |b E. S.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1988-  |g Evgeniya Sergeevna  |3 (RuTPU)RU\TPU\pers\40027  |9 21197 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20221110  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1002/adma.202206877 
942 |c CF