Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response

Bibliographic Details
Parent link:Polymer Journal
Vol. X, iss. XX.— 2022.— [16 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Other Authors: Pary (Pariy) I. O. Igor Olegovich, Chernozem R. V. Roman Viktorovich, Chernozem P. V. Polina Viktorovna, Mukhortova Yu. R. Yulia Ruslanovna, Skirtach A. G. Andre, Shvartsman V. V. Vladimir, Lupascu D. C. Doru, Surmeneva M. A. Maria Alexandrovna, Mathur S. Sanjay, Surmenev R. A. Roman Anatolievich
Summary:Title screen
Piezoelectric poly-L-lactide (PLLA) is a biodegradable polymer used in various biomedical applications. However, tailoring and controlling the structure of PLLA to enhance its piezoelectric response remains a challenge. In this work, extensive characterization was performed to reveal the effect of the reduced graphene oxide (rGO) content (0.2, 0.7, and 1.0 wt%) on the morphology, structure, thermal and piezoelectric behavior of PLLA scaffolds. Randomly oriented homogeneous fibers and a quasi-amorphous structure for pure PLLA and hybrid PLLA-rGO scaffolds were revealed. The addition of rGO affected the molecular structure of the PLLA scaffolds: for example, the number of polar C=O functional groups was increased. Increasing the content of rGO to 1 wt% resulted in decreased glass transition and melting temperatures and increased the degree of crystallinity of the scaffolds. The addition of 0.2 wt% rGO enhanced the effective local vertical and lateral piezoresponses by 2.3 and 15.4 times, respectively, in comparison with pure PLLA fibers. The presence of the shear piezoelectric a-phase (P212121) in uniaxially oriented PLLA fibers and C=O bond rotation in the polymer chains explained the observed piezoresponse. Thus, this study revealed routes to prepare hybrid biodegradable scaffolds with enhanced piezoresponse for tissue engineering applications.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.1038/s41428-022-00669-1
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668264

MARC

LEADER 00000naa0a2200000 4500
001 668264
005 20250826095149.0
035 |a (RuTPU)RU\TPU\network\39488 
090 |a 668264 
100 |a 20220729d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response  |f I. O. Pary (Pariy), R. V. Chernozem, P. V. Chernozem [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 129 tit.] 
330 |a Piezoelectric poly-L-lactide (PLLA) is a biodegradable polymer used in various biomedical applications. However, tailoring and controlling the structure of PLLA to enhance its piezoelectric response remains a challenge. In this work, extensive characterization was performed to reveal the effect of the reduced graphene oxide (rGO) content (0.2, 0.7, and 1.0 wt%) on the morphology, structure, thermal and piezoelectric behavior of PLLA scaffolds. Randomly oriented homogeneous fibers and a quasi-amorphous structure for pure PLLA and hybrid PLLA-rGO scaffolds were revealed. The addition of rGO affected the molecular structure of the PLLA scaffolds: for example, the number of polar C=O functional groups was increased. Increasing the content of rGO to 1 wt% resulted in decreased glass transition and melting temperatures and increased the degree of crystallinity of the scaffolds. The addition of 0.2 wt% rGO enhanced the effective local vertical and lateral piezoresponses by 2.3 and 15.4 times, respectively, in comparison with pure PLLA fibers. The presence of the shear piezoelectric a-phase (P212121) in uniaxially oriented PLLA fibers and C=O bond rotation in the polymer chains explained the observed piezoresponse. Thus, this study revealed routes to prepare hybrid biodegradable scaffolds with enhanced piezoresponse for tissue engineering applications. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Polymer Journal 
463 |t Vol. X, iss. XX  |v [16 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a biomedical materials 
610 1 |a materials science 
610 1 |a physics 
610 1 |a биомедицинские материалы 
610 1 |a материаловедение 
610 1 |a физика 
701 1 |a Pary (Pariy)  |b I. O.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1995-  |g Igor Olegovich  |3 (RuTPU)RU\TPU\pers\45219 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Chernozem  |b P. V.  |c specialist in the field of informatics and computer technology  |c Research Engineer of Tomsk Polytechnic University  |f 1997-  |g Polina Viktorovna  |3 (RuTPU)RU\TPU\pers\47140  |9 22733 
701 1 |a Mukhortova  |b Yu. R.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1976-  |g Yulia Ruslanovna  |3 (RuTPU)RU\TPU\pers\46606  |9 22264 
701 1 |a Skirtach  |b A. G.  |g Andre 
701 1 |a Shvartsman  |b V. V.  |g Vladimir 
701 1 |a Lupascu  |b D. C.  |g Doru 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Mathur  |b S.  |g Sanjay 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 0 |a RU  |b 63413507  |c 20220729  |g RCR 
856 4 |u https://doi.org/10.1038/s41428-022-00669-1 
942 |c CF