Interaction of Radiation and Turbulent Natural Convection: A Pseudo-Direct Numerical Study

Opis bibliograficzny
Parent link:Advances in Applied Mathematics and Mechanics
Vol. XX, No. X.— 2022.— [20 p.]
1. autor: Nee A. E. Aleksandr Eduardovich
Korporacja: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Kolejni autorzy: Chamkha A. J. Ali
Streszczenie:Title screen
This paper presents a hybrid lattice Boltzmann solver for turbulentbuoyancy-driven flow coupled with surface thermal radiation. The two-relaxation time scheme for the Boltzmann equation combined with the implicit finite difference scheme for the energy equation is implemented to compute the heat transfer and fluid flow characteristics. The accuracy and robustness of the hybrid approach proposed in this study are assessed in terms of the numerical and experimental data of other researchers. Upon performing the simulation, the Rayleigh number is ranged from 108 to 1010 whereas the surface emissivity is changed from zero to unity. During computations, it is found that the overall temperature of the cavity is increased as a result of enhancing the surface radiation. Convective plumes are formed both at the isothermal and the thermally-insulated walls with the Ra=109 and e=0.6. In the conditions under study, the overall heat transfer rate is raised by around 5% when taking into account the surface thermal radiation.
Język:angielski
Wydane: 2022
Hasła przedmiotowe:
Dostęp online:https://doc.global-sci.org/uploads/online_news/AAMM/867d52587b86b2b875e7525a40433af5.pdf
Format: Elektroniczne Rozdział
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668263

MARC

LEADER 00000naa0a2200000 4500
001 668263
005 20250314160822.0
035 |a (RuTPU)RU\TPU\network\39487 
090 |a 668263 
100 |a 20220729d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Interaction of Radiation and Turbulent Natural Convection: A Pseudo-Direct Numerical Study  |f A. E. Nee, A. J. Chamkha 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a This paper presents a hybrid lattice Boltzmann solver for turbulentbuoyancy-driven flow coupled with surface thermal radiation. The two-relaxation time scheme for the Boltzmann equation combined with the implicit finite difference scheme for the energy equation is implemented to compute the heat transfer and fluid flow characteristics. The accuracy and robustness of the hybrid approach proposed in this study are assessed in terms of the numerical and experimental data of other researchers. Upon performing the simulation, the Rayleigh number is ranged from 108 to 1010 whereas the surface emissivity is changed from zero to unity. During computations, it is found that the overall temperature of the cavity is increased as a result of enhancing the surface radiation. Convective plumes are formed both at the isothermal and the thermally-insulated walls with the Ra=109 and e=0.6. In the conditions under study, the overall heat transfer rate is raised by around 5% when taking into account the surface thermal radiation. 
461 1 |t Advances in Applied Mathematics and Mechanics 
463 1 |t Vol. XX, No. X  |v [20 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a pseudo-direct numerical simulation 
610 1 |a surface radiation 
610 1 |a hybrid lattice Boltzmann scheme 
610 1 |a turbulent natural convection 
610 1 |a конвекция 
610 1 |a численное моделирование 
610 1 |a излучение 
700 1 |a Nee  |b A. E.  |c specialist in the field of thermal engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences  |f 1990-  |g Aleksandr Eduardovich  |3 (RuTPU)RU\TPU\pers\35708  |9 18868 
701 1 |a Chamkha  |b A. J.  |g Ali 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
801 0 |a RU  |b 63413507  |c 20220729  |g RCR 
856 4 |u https://doc.global-sci.org/uploads/online_news/AAMM/867d52587b86b2b875e7525a40433af5.pdf 
942 |c CF