Identification of apple diseases in digital images by using the Gaining-sharing knowledge-based algorithm for multilevel thresholding

Detaylı Bibliyografya
Parent link:Soft Computing
Vol. 26, iss. 5.— 2022.— [P. 2587–2623]
Müşterek Yazar: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Diğer Yazarlar: Noe O.-S. Ortega-Sanchez, Rodriguez-Esparza E. Erick, Oliva Navarro D. A. Diego Alberto, Marco P.-C. Perez-Cisneros, Wagdy M. A. Mohamed Ali, Gaurav Dh. Dhima, Hernandez-Montelongo R. Rosaura
Özet:Title screen
Identifying the defects in apples is commonly done with visual examination techniques. However, it is a slow and laborious process. Image processing techniques have begun to be used to help and make the diagnosis of fruit diseases more efficient. In image processing systems, the segmentation of regions in the scenes is a crucial step. Specifically for images from apples, disease segmentation is a complicated task due to the different elements that affect the acquisition of the images. In addition, apple diseases also have features that need to be segmented. In this work, an efficient approach that uses the Gaining-sharing Knowledge-based (GSK) algorithm is proposed to optimize the minimum cross-entropy thresholding (MCET) for the segmentation of apple images highlighting the diseases defects. The proposed MCET-GSK has been tested for experimental purposes over different images and compared with various metaheuristics. The experiments were conducted to provide evidence of the GSK’s optimization capabilities by performing the Wilcoxon test and applying a set of metrics to verify the quality of the segmented images. The experimental results validate the performance of the MCET-GSK in the segmentation of apple images by adequately separating the regions with damage produced by a disease. The quality of the segmentation is superior compared with other similar approaches.
Dil:İngilizce
Baskı/Yayın Bilgisi: 2022
Konular:
Online Erişim:https://doi.org/10.1007/s00500-021-06418-5
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668242

MARC

LEADER 00000naa0a2200000 4500
001 668242
005 20250314163826.0
035 |a (RuTPU)RU\TPU\network\39466 
035 |a RU\TPU\network\36307 
090 |a 668242 
100 |a 20220704d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
182 0 |a b 
200 1 |a Identification of apple diseases in digital images by using the Gaining-sharing knowledge-based algorithm for multilevel thresholding  |f O.-S. Noe, E. Rodriguez-Esparza, D. A. Oliva Navarro [et al.] 
203 |c electronic 
300 |a Title screen 
330 |a Identifying the defects in apples is commonly done with visual examination techniques. However, it is a slow and laborious process. Image processing techniques have begun to be used to help and make the diagnosis of fruit diseases more efficient. In image processing systems, the segmentation of regions in the scenes is a crucial step. Specifically for images from apples, disease segmentation is a complicated task due to the different elements that affect the acquisition of the images. In addition, apple diseases also have features that need to be segmented. In this work, an efficient approach that uses the Gaining-sharing Knowledge-based (GSK) algorithm is proposed to optimize the minimum cross-entropy thresholding (MCET) for the segmentation of apple images highlighting the diseases defects. The proposed MCET-GSK has been tested for experimental purposes over different images and compared with various metaheuristics. The experiments were conducted to provide evidence of the GSK’s optimization capabilities by performing the Wilcoxon test and applying a set of metrics to verify the quality of the segmented images. The experimental results validate the performance of the MCET-GSK in the segmentation of apple images by adequately separating the regions with damage produced by a disease. The quality of the segmentation is superior compared with other similar approaches. 
461 |t Soft Computing 
463 |t Vol. 26, iss. 5  |v [P. 2587–2623]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a apple diseases identification 
610 1 |a multilevel segmentation 
610 1 |a Gaining Sharing Knowledge based (GSK) 
610 1 |a apple defects 
610 1 |a metaheuristics 
701 1 |a Noe  |b O.-S.  |g Ortega-Sanchez 
701 1 |a Rodriguez-Esparza  |b E.  |g Erick 
701 1 |a Oliva Navarro  |b D. A.  |c specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Diego Alberto  |3 (RuTPU)RU\TPU\pers\37366 
701 1 |a Marco  |b P.-C.  |g Perez-Cisneros 
701 1 |a Wagdy  |b M. A.  |g Mohamed Ali 
701 1 |a Gaurav  |b Dh.  |g Dhima 
701 1 |a Hernandez-Montelongo  |b R.  |g Rosaura 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 0 |a RU  |b 63413507  |c 20220704  |g RCR 
856 4 |u https://doi.org/10.1007/s00500-021-06418-5 
942 |c CF