The complex research on the technical conditions of energy application of wood pyrolysis bio-oil

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Energy, Ecology and Environment
Vol. ХХ, iss. Х.— 2022.— [16 p.]
সংস্থা লেখক: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова), Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение химической инженерии
অন্যান্য লেখক: Larionov K. B. Kirill Borisovich, Slusarskiy (Slyusarsky) K. V. Konstantin Vitalievich, Kirgina M. V. Mariya Vladimirovna, Gvozdyakov D. V. Dmitry Vasilievich, Zenkov A. V. Andrey Viktorovich, Bogdanov I. A. Ilya Aleksandrovich, Kaltaev A. Albert, Gubin V. E. Vladimir Evgenievich
সংক্ষিপ্ত:Title screen
The slow pyrolysis is a viable technology for the production of different solid products. However, its effective implementation requires utilization of material flows occurring in gaseous and liquid phases. Because liquid products of slow pyrolysis, typically referred to as bio-oil, are just by-product, their combustion characteristics are poorly studied. Current article presents the comprehensive experimental studies of the technical conditions of the slow pyrolysis bio-oil retrieved at commercial pyrolysis facility. The studies cover the composition and physicochemical properties of bio-oil, spraying characteristics, droplet ignition and combustion, and analysis of gas-phase combustion products. The bio-oil sample had relatively high density (? = 1180 kg/m3) and dynamic viscosity (184.16 mPa s). The pour (Tpp = 7 °C) and flashpoint (Tfp = 133 °C) were also high. The lower heating value was 25.01 MJ/kg. The majority of properties was consistent with requirements of ASTM 7544, while viscosity, pour point, and ash content were not. The study on bio-oil spraying was carried out using hydrodynamic setup equipped with pneumatic mechanical nozzle and cross-correlation camera. The fuel jet had a homogeneous structure with an average droplet diameter exceeding 0.2 mm. Ignition and combustion were studied using combustion chamber with varying the heating medium temperature in the range of 400–800 °C with a 50 °C step. The ignition delay and total combustion times of the bio-oil sample were exponentially decreasing with increasing heating medium temperature. In the temperature range of 400–500 °C, the thermal transformation proceeded in the oxidation mode, while at temperatures above 500 °C, the flame with periodic formation of microexplosions was observed.
Режим доступа: по договору с организацией-держателем ресурса
ভাষা:ইংরেজি
প্রকাশিত: 2022
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.1007/s40974-022-00247-4
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668205

MARC

LEADER 00000naa0a2200000 4500
001 668205
005 20250912135844.0
035 |a (RuTPU)RU\TPU\network\39429 
035 |a RU\TPU\network\36012 
090 |a 668205 
100 |a 20220629d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The complex research on the technical conditions of energy application of wood pyrolysis bio-oil  |f K. B. Larionov, K. V. Slusarskiy (Slyusarsky), M. V. Kirgina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 63 tit.] 
330 |a The slow pyrolysis is a viable technology for the production of different solid products. However, its effective implementation requires utilization of material flows occurring in gaseous and liquid phases. Because liquid products of slow pyrolysis, typically referred to as bio-oil, are just by-product, their combustion characteristics are poorly studied. Current article presents the comprehensive experimental studies of the technical conditions of the slow pyrolysis bio-oil retrieved at commercial pyrolysis facility. The studies cover the composition and physicochemical properties of bio-oil, spraying characteristics, droplet ignition and combustion, and analysis of gas-phase combustion products. The bio-oil sample had relatively high density (? = 1180 kg/m3) and dynamic viscosity (184.16 mPa s). The pour (Tpp = 7 °C) and flashpoint (Tfp = 133 °C) were also high. The lower heating value was 25.01 MJ/kg. The majority of properties was consistent with requirements of ASTM 7544, while viscosity, pour point, and ash content were not. The study on bio-oil spraying was carried out using hydrodynamic setup equipped with pneumatic mechanical nozzle and cross-correlation camera. The fuel jet had a homogeneous structure with an average droplet diameter exceeding 0.2 mm. Ignition and combustion were studied using combustion chamber with varying the heating medium temperature in the range of 400–800 °C with a 50 °C step. The ignition delay and total combustion times of the bio-oil sample were exponentially decreasing with increasing heating medium temperature. In the temperature range of 400–500 °C, the thermal transformation proceeded in the oxidation mode, while at temperatures above 500 °C, the flame with periodic formation of microexplosions was observed. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Energy, Ecology and Environment 
463 |t Vol. ХХ, iss. Х  |v [16 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a pyrolysis bio-oil 
610 1 |a physical–chemical characteristics 
610 1 |a spraying 
610 1 |a ignition 
610 1 |a combustion 
610 1 |a gas-phase combustion products 
610 1 |a распыление 
610 1 |a зажигание 
610 1 |a горение 
610 1 |a продукты сгорания 
701 1 |a Larionov  |b K. B.  |c specialist in the field of power engineering  |c technician of Tomsk Polytechnic University  |f 1990-  |g Kirill Borisovich  |3 (RuTPU)RU\TPU\pers\35705 
701 1 |a Slusarskiy (Slyusarsky)  |b K. V.  |g Konstantin Vitalievich  |f 1990-  |c specialist in the field of power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |3 (RuTPU)RU\TPU\pers\35634  |9 18803 
701 1 |a Kirgina  |b M. V.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1988-  |g Mariya Vladimirovna  |3 (RuTPU)RU\TPU\pers\31994 
701 1 |a Gvozdyakov  |b D. V.  |c specialist in the field of power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Dmitry Vasilievich  |3 (RuTPU)RU\TPU\pers\35121  |9 18396 
701 1 |a Zenkov  |b A. V.  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |c specialist in the field of power engineering  |f 1992-  |g Andrey Viktorovich  |3 (RuTPU)RU\TPU\pers\37816 
701 1 |a Bogdanov  |b I. A.  |c chemist  |c Research Engineer of Tomsk Polytechnic University  |f 1994-  |g Ilya Aleksandrovich  |3 (RuTPU)RU\TPU\pers\46560  |9 22218 
701 1 |a Kaltaev  |b A.  |c Physicist  |c Assistant of the Department of Tomsk Polytechnic University  |f 1995-  |g Albert  |3 (RuTPU)RU\TPU\pers\47142 
701 1 |a Gubin  |b V. E.  |c specialist in the field of power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1976-  |g Vladimir Evgenievich  |3 (RuTPU)RU\TPU\pers\35120  |9 18395 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение химической инженерии  |3 (RuTPU)RU\TPU\col\23513 
801 0 |a RU  |b 63413507  |c 20220629  |g RCR 
856 4 |u https://doi.org/10.1007/s40974-022-00247-4 
942 |c CF