Nonlinear Mechanical Effect of Free Water on the Dynamic Compressive Strength and Fracture of High-Strength Concrete

Bibliographic Details
Parent link:Materials
Vol. 14, iss. 14.— 2021.— [4011, 34 p.]
Main Author: Shilko E. V. Evgeny Viktorovich
Corporate Authors: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Konovalenko I. S. Igor Sergeevich, Konovalenko I. S. Ivan Sergeevich
Summary:Title screen
It is well-known that the effect of interstitial fluid on the fracture pattern and strength of saturated high-strength concrete is determined by qualitatively different mechanisms at quasi-static and high strain rate loading. This paper shows that the intermediate range of strain rates (10−4 s−1 < ε˙ < 100 s−1) is also characterized by the presence of a peculiar mechanism of interstitial water effect on the concrete fracture and compressive strength. Using computer simulations, we have shown that such a mechanism is the competition of two oppositely directed processes: deformation of the pore space, which leads to an increase in pore pressure; and pore fluid flow. The balance of these processes can be effectively characterized by the Darcy number, which generalizes the notion of strain rate to fluid-saturated material. We have found that the dependence of the compressive strength of high-strength concrete on the Darcy number is a decreasing sigmoid function. The parameters of this function are determined by both low-scale (capillary) and large-scale (microscopic) pore subsystems in a concrete matrix. The capillary pore network determines the phenomenon of strain-rate sensitivity of fluid-saturated concrete and logistic form of the dependence of compressive strength on strain rate. Microporosity controls the actual boundary of the quasi-static loading regime for fluid-saturated samples and determines localized fracture patterns. The results of the study are relevant to the design of special-purpose concretes, as well as the assessment of the limits of safe impacts on concrete structural elements.
Language:English
Published: 2021
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/74811
https://doi.org/10.3390/ma14144011
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668159

MARC

LEADER 00000naa0a2200000 4500
001 668159
005 20250321154101.0
035 |a (RuTPU)RU\TPU\network\39383 
090 |a 668159 
100 |a 20220627d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Nonlinear Mechanical Effect of Free Water on the Dynamic Compressive Strength and Fracture of High-Strength Concrete  |f E. V. Shilko, I. S. Konovalenko, I. S. Konovalenko 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 87 tit.] 
330 |a It is well-known that the effect of interstitial fluid on the fracture pattern and strength of saturated high-strength concrete is determined by qualitatively different mechanisms at quasi-static and high strain rate loading. This paper shows that the intermediate range of strain rates (10−4 s−1 < ε˙ < 100 s−1) is also characterized by the presence of a peculiar mechanism of interstitial water effect on the concrete fracture and compressive strength. Using computer simulations, we have shown that such a mechanism is the competition of two oppositely directed processes: deformation of the pore space, which leads to an increase in pore pressure; and pore fluid flow. The balance of these processes can be effectively characterized by the Darcy number, which generalizes the notion of strain rate to fluid-saturated material. We have found that the dependence of the compressive strength of high-strength concrete on the Darcy number is a decreasing sigmoid function. The parameters of this function are determined by both low-scale (capillary) and large-scale (microscopic) pore subsystems in a concrete matrix. The capillary pore network determines the phenomenon of strain-rate sensitivity of fluid-saturated concrete and logistic form of the dependence of compressive strength on strain rate. Microporosity controls the actual boundary of the quasi-static loading regime for fluid-saturated samples and determines localized fracture patterns. The results of the study are relevant to the design of special-purpose concretes, as well as the assessment of the limits of safe impacts on concrete structural elements. 
461 |t Materials 
463 |t Vol. 14, iss. 14  |v [4011, 34 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a water-saturated concrete 
610 1 |a two-scale porosity 
610 1 |a permeability 
610 1 |a fluid filtration 
610 1 |a dynamic loading 
610 1 |a fracture 
610 1 |a compressive strength 
610 1 |a computer simulation 
610 1 |a discrete element method 
610 1 |a coupled poroelastic model 
610 1 |a бетон 
610 1 |a пористость 
610 1 |a проходимость 
610 1 |a фильтрация 
610 1 |a динамическая нагрузка 
610 1 |a прочность на сжатие 
610 1 |a компьютерное моделирование 
700 1 |a Shilko  |b E. V.  |c physicist  |c engineer of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1973-  |g Evgeny Viktorovich  |3 (RuTPU)RU\TPU\pers\35909 
701 1 |a Konovalenko  |b I. S.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, candidate of physical and mathematical sciences  |f 1980-  |g Igor Sergeevich  |3 (RuTPU)RU\TPU\pers\35818  |9 18963 
701 1 |a Konovalenko  |b I. S.  |c Physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1980-  |g Ivan Sergeevich  |3 (RuTPU)RU\TPU\pers\37812  |9 20526 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20230320  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/74811 
856 4 |u https://doi.org/10.3390/ma14144011 
942 |c CF