Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications
| Parent link: | Polymers Vol. 14, iss. 3.— 2022.— [529, 17 p. ] |
|---|---|
| Співавтори: | Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы", Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий |
| Інші автори: | Pryadko A. Artyom, Botvin V. V. Vladimir Viktorovich, Mukhortova Yu. R. Yulia Ruslanovna, Pary (Pariy) I. O. Igor Olegovich, Vagner D. V. Dmitry Viktorovich, Laktionov P. P. Pavel Petrovich, Chernonosova V. S. Vera Sergeevna, Chelobanov B. P. Boris Pavlovich, Chernozem R. V. Roman Viktorovich, Surmeneva M. A. Maria Alexandrovna, Kholkin A. L. Andrei Leonidovich, Surmenev R. A. Roman Anatolievich |
| Резюме: | Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications. |
| Опубліковано: |
2022
|
| Предмети: | |
| Онлайн доступ: | https://doi.org/10.3390/polym14030529 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668014 |
Схожі ресурси
Electrospun magnetoactive hybrid P(VDF-TrFE) scaffolds heavily loaded with citric-acid-modified magnetite nanoparticles
Опубліковано: (2024)
Опубліковано: (2024)
Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury
Опубліковано: (2024)
Опубліковано: (2024)
Electrospun composites of poly-3-hydroxybutyrate reinforced with conductive fillers for in vivo bone regeneration
Опубліковано: (2022)
Опубліковано: (2022)
Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field
Опубліковано: (2024)
Опубліковано: (2024)
The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro
Опубліковано: (2021)
Опубліковано: (2021)
Osteogenic Potential and Long-Term Enzymatic Biodegradation of PHB-based Scaffolds with Composite Magnetic Nanofillers in a Magnetic Field
Опубліковано: (2024)
Опубліковано: (2024)
Sub-20-nm magnetite-based core-shell nanoparticles with strong magnetic, magnetoelectric, and nanocatalytic properties
Опубліковано: (2025)
Опубліковано: (2025)
Surface Modification of PLLA Electrospun Nanofiber Materials for Biomedical Applications
Опубліковано: (2018)
Опубліковано: (2018)
Влияние β-глицина на морфологию, кристаллическую структуру, свойства поверхности и пьезоэлектрический отклик полимерных нановолокон для тканевой инженерии
за авторством: Шлапакова Л. Е. Лада Евгеньевна
Опубліковано: (2025)
за авторством: Шлапакова Л. Е. Лада Евгеньевна
Опубліковано: (2025)
Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride-co-trifluoroethylene) and magnetite particles with varied sizes
Опубліковано: (2022)
Опубліковано: (2022)
3D-printed biodegradable composite poly(lactic acid)-based scaffolds with a shape memory effect for bone tissue engineering
Опубліковано: (2025)
Опубліковано: (2025)
Magnetite’s Influence on the Radio-Absorbing Properties of a Porous Glass Composite at High-Frequencies
за авторством: Skirdin K. V. Kirill Vyacheslavovich
Опубліковано: (2022)
за авторством: Skirdin K. V. Kirill Vyacheslavovich
Опубліковано: (2022)
Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds To Promote Prolonged Release
Опубліковано: (2020)
Опубліковано: (2020)
Исследование влияния сегнетоэлектрической оболочки перовскита Ba0,95Ca0,15Zr0,1Ti0,9O3 на морфологию, состав, структуру и магнитные свойства наночастиц магнетита
за авторством: Уракова А. О. Алина Олеговна
Опубліковано: (2024)
за авторством: Уракова А. О. Алина Олеговна
Опубліковано: (2024)
Получение и исследование модифицированных электроформованных скэффолдов на основе поли(винилиденфторида-со-трифторэтилена)
за авторством: Ботвин В. В. Владимир Викторович
Опубліковано: (2024)
за авторством: Ботвин В. В. Владимир Викторович
Опубліковано: (2024)
A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles
Опубліковано: (2022)
Опубліковано: (2022)
Biological Effect of the Surface Modification of the Fibrous Poly(L-lactic acid) Scaffolds by Radio Frequency Magnetron Sputtering of Different Calcium-Phosphate Targets
Опубліковано: (2017)
Опубліковано: (2017)
“Solvent/non-solvent” treatment as a method for non-covalent immobilization of gelatin on the surface of poly(l-lactic acid) electrospun scaffolds
Опубліковано: (2019)
Опубліковано: (2019)
Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications
Опубліковано: (2021)
Опубліковано: (2021)
Fabrication of PVA Coatings Applied to Electrospun PLGA Scaffolds to Prevent Postoperative Adhesions
Опубліковано: (2025)
Опубліковано: (2025)
Electrospun polycaprolactone scaffolds loaded with a 1,4-naphthoquinone derivative for anticancer therapy
Опубліковано: (2022)
Опубліковано: (2022)
Electrospun Fibers and Sorbents as a Possible Basis for Effective Composite Wound Dressings
Опубліковано: (2020)
Опубліковано: (2020)
Вещественный состав медных шлаков Алмалыкского медеплавильного завода (Узбекистан)
Опубліковано: (2024)
Опубліковано: (2024)
In vitro degradation behaviour of hybrid electrospun scaffolds of polycaprolactone and strontium-containing hydroxyapatite microparticles
Опубліковано: (2019)
Опубліковано: (2019)
Перспективы комплексного освоения Бакчарского железорудного месторождения (Западная Сибирь, Россия)
Опубліковано: (2018)
Опубліковано: (2018)
Radiolabeling Strategies of Micron- and Submicron-Sized Core–Shell Carriers for In Vivo Studies
Опубліковано: (2020)
Опубліковано: (2020)
Enhancing catalytic performance via structure core-shell metal-organic frameworks
Опубліковано: (2019)
Опубліковано: (2019)
Modification of PCL Scaffolds by Reactive Magnetron Sputtering: A Possibility for Modulating Macrophage Responses
Опубліковано: (2020)
Опубліковано: (2020)
Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method
Опубліковано: (2019)
Опубліковано: (2019)
Pulsed Vacuum Arc Deposition of Nitrogen-Doped Diamond-like Coatings for Long-Term Hydrophilicity of Electrospun Poly(ε-caprolactone) Scaffolds
Опубліковано: (2022)
Опубліковано: (2022)
Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration
Опубліковано: (2019)
Опубліковано: (2019)
A comprehensive study on in situ synthesis of a magnetic nanocomposite of magnetite and reduced graphene oxide and its effectiveness at removing arsenic from water
Опубліковано: (2023)
Опубліковано: (2023)
A fixed-bed-column study on arsenic removal from water using an in situ-synthesized nanocomposite of magnetite and reduced graphene oxide
Опубліковано: (2025)
Опубліковано: (2025)
A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering
Опубліковано: (2017)
Опубліковано: (2017)
The Effect of Various Surface Functionalizations of Core–Shell Nanoactuators on Magnetoelectrically Driven Cell Growth
Опубліковано: (2025)
Опубліковано: (2025)
Electrospun VDF-TeFE Scaffolds Modified by Copper and Titanium in Magnetron Plasma and Their Antibacterial Activity against MRSA
Опубліковано: (2021)
Опубліковано: (2021)
Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation
Опубліковано: (2019)
Опубліковано: (2019)
Piezoelectric and Dielectric Electrospun Fluoropolymer Membranes for Oral Mucosa Regeneration: A Comparative Study
Опубліковано: (2024)
Опубліковано: (2024)
Electrospun Poly-L-Lactic Acid Scaffolds Surface-Modified via Reactive Magnetron Sputtering Using Different Mixing Ratios of Nitrogen and Xenon
Опубліковано: (2023)
Опубліковано: (2023)
The effect of low-temperature auto-ignition of W–Cu2O nanopowders with core-shell structure
за авторством: Krinitsyn M. G. Maksim Germanovich
Опубліковано: (2022)
за авторством: Krinitsyn M. G. Maksim Germanovich
Опубліковано: (2022)
Схожі ресурси
-
Electrospun magnetoactive hybrid P(VDF-TrFE) scaffolds heavily loaded with citric-acid-modified magnetite nanoparticles
Опубліковано: (2024) -
Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury
Опубліковано: (2024) -
Electrospun composites of poly-3-hydroxybutyrate reinforced with conductive fillers for in vivo bone regeneration
Опубліковано: (2022) -
Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field
Опубліковано: (2024) -
The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro
Опубліковано: (2021)