Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications

Bibliografski detalji
Parent link:Polymers
Vol. 14, iss. 3.— 2022.— [529, 17 p. ]
Autori kompanije: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы", Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Daljnji autori: Pryadko A. Artyom, Botvin V. V. Vladimir Viktorovich, Mukhortova Yu. R. Yulia Ruslanovna, Pary (Pariy) I. O. Igor Olegovich, Vagner D. V. Dmitry Viktorovich, Laktionov P. P. Pavel Petrovich, Chernonosova V. S. Vera Sergeevna, Chelobanov B. P. Boris Pavlovich, Chernozem R. V. Roman Viktorovich, Surmeneva M. A. Maria Alexandrovna, Kholkin A. L. Andrei Leonidovich, Surmenev R. A. Roman Anatolievich
Sažetak:Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.
Izdano: 2022
Teme:
Online pristup:https://doi.org/10.3390/polym14030529
Format: Elektronički Poglavlje knjige
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668014

MARC

LEADER 00000naa0a2200000 4500
001 668014
005 20250826101841.0
035 |a (RuTPU)RU\TPU\network\39225 
035 |a RU\TPU\network\39034 
090 |a 668014 
100 |a 20220527d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications  |f A. Pryadko, V. V. Botvin, Yu. R. Mukhortova [et al.] 
203 |a Text  |c electronic 
320 |a [References: 75 tit.] 
330 |a Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications. 
461 |t Polymers 
463 |t Vol. 14, iss. 3  |v [529, 17 p. ]  |d 2022 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a magnetoactive scaffold 
610 1 |a poly-3-hydroxybutyrate 
610 1 |a magnetite 
610 1 |a composite 
610 1 |a core-shell structure 
610 1 |a магнетит 
610 1 |a структура 
701 1 |a Pryadko  |b A.  |c Specialist in the field of nuclear technologies  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Artyom  |3 (RuTPU)RU\TPU\pers\46948 
701 1 |a Botvin  |b V. V.  |c chemist  |c Senior Researcher of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1991-  |g Vladimir Viktorovich  |3 (RuTPU)RU\TPU\pers\47211 
701 1 |a Mukhortova  |b Yu. R.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1976-  |g Yulia Ruslanovna  |3 (RuTPU)RU\TPU\pers\46606  |9 22264 
701 1 |a Pary (Pariy)  |b I. O.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1995-  |g Igor Olegovich  |3 (RuTPU)RU\TPU\pers\45219 
701 1 |a Vagner  |b D. V.  |g Dmitry Viktorovich 
701 1 |a Laktionov  |b P. P.  |g Pavel Petrovich 
701 1 |a Chernonosova  |b V. S.  |g Vera Sergeevna 
701 1 |a Chelobanov  |b B. P.  |g Boris Pavlovich 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Kholkin  |b A. L.  |c physicist  |c Director of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1954-  |g Andrei Leonidovich  |3 (RuTPU)RU\TPU\pers\47207 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20220527  |g RCR 
856 4 |u https://doi.org/10.3390/polym14030529 
942 |c CF