Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy

Λεπτομέρειες βιβλιογραφικής εγγραφής
Parent link:Small Methods
Vol. 6, iss. 2.— 2022.— [2101289, 12 p.]
Άλλοι συγγραφείς: Alikin D. Denis, Abramov A. Aleksandr, Turygin A. Anton, Ivlev A. Anton, Pryakhina V. Viktoriya, Karpinsky D. Dmitry, Qingyuan Hu, Li Jin, Shur V. Vladimir, Tselev A. Alexander, Kholkin A. L. Andrei Leonidovich
Περίληψη:Title screen
Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.
Γλώσσα:Αγγλικά
Έκδοση: 2022
Θέματα:
Διαθέσιμο Online:https://doi.org/10.1002/smtd.202101289
Μορφή: Ηλεκτρονική πηγή Κεφάλαιο βιβλίου
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668007