Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy

ग्रंथसूची विवरण
Parent link:Small Methods
Vol. 6, iss. 2.— 2022.— [2101289, 12 p.]
अन्य लेखक: Alikin D. Denis, Abramov A. Aleksandr, Turygin A. Anton, Ivlev A. Anton, Pryakhina V. Viktoriya, Karpinsky D. Dmitry, Qingyuan Hu, Li Jin, Shur V. Vladimir, Tselev A. Alexander, Kholkin A. L. Andrei Leonidovich
सारांश:Title screen
Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.
भाषा:अंग्रेज़ी
प्रकाशित: 2022
विषय:
ऑनलाइन पहुंच:https://doi.org/10.1002/smtd.202101289
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668007

MARC

LEADER 00000naa0a2200000 4500
001 668007
005 20250327132438.0
035 |a (RuTPU)RU\TPU\network\39218 
035 |a RU\TPU\network\39157 
090 |a 668007 
100 |a 20220526d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy  |f D. Alikin, A. Abramov, A. Turygin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 76 tit.] 
330 |a Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics. 
461 |t Small Methods 
463 |t Vol. 6, iss. 2  |v [2101289, 12 p.]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a bias field domain walls 
610 1 |a hysteresis loops 
610 1 |a polarization reversal screening vacancies 
610 1 |a доменные стенки 
610 1 |a поля смещения 
610 1 |a петля гистерезиса 
701 1 |a Alikin  |b D.  |g Denis 
701 1 |a Abramov  |b A.  |g Aleksandr 
701 1 |a Turygin  |b A.  |g Anton 
701 1 |a Ivlev  |b A.  |g Anton 
701 1 |a Pryakhina  |b V.  |g Viktoriya 
701 1 |a Karpinsky  |b D.  |g Dmitry 
701 0 |a Qingyuan Hu 
701 0 |a Li Jin 
701 1 |a Shur  |b V.  |g Vladimir 
701 1 |a Tselev  |b A.  |g Alexander 
701 1 |a Kholkin  |b A. L.  |c physicist  |c Director of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1954-  |g Andrei Leonidovich  |3 (RuTPU)RU\TPU\pers\47207 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20221223  |g RCR 
856 4 |u https://doi.org/10.1002/smtd.202101289 
942 |c CF