Functionalization of additive-manufactured Ti6Al4V scaffolds with poly(allylamine hydrochloride)/poly(styrene sulfonate) bilayer microcapsule system containing dexamethasone

Bibliographic Details
Parent link:Materials Chemistry and Physics
Vol. 273.— 2021.— [125099, 14 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы", Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Chudinova E. A. Ekaterina Aleksandrovna, Koptyug A. Andrey, Mukhortova Yu. R. Yulia Ruslanovna, Pryadko A. Artyom, Volkova A. P. Anastasia Petrovna, Ivanov A. A. Aleksey Alekseevich, Plotnikov E. V. Evgeny Vladimirovich, Khan E. A. Elena Alekseevna, Epple M. Matthias, Sokolova V. Viktoriya, Prymak O. Oleg, Douglas T. Timothy, Surmenev R. A. Roman Anatolievich, Surmeneva M. A. Maria Alexandrovna
Summary:Title screen
Porous titanium alloy Ti6Al4V scaffolds manufactured via electron beam melting (EBM®) reveal broad prospects for applications in bone tissue engineering. However, local inflammation and even implant failure may occur while placing an implant into the body. Thus, the application of drug carriers to the surface of a metallic implant can provide treatment at the inflammation site. In this study, we propose to use polyelectrolyte (PE) microcapsules formed by layer-by-layer (LbL) synthesis loaded with both porous calcium carbonate (CaCO3) microparticles and the anti-inflammatory drug dexamethasone (DEX) to functionalize implant surfaces and achieve controlled drug release. Scanning electron microscopy indicated that the CaCO3 microparticles coated with PE bilayers loaded with DEX had a spherical shape with a diameter of 2.3 ± 0.2 µm and that the entire scaffold surface was evenly coated with the microcapsules. UV spectroscopy showed that LbL synthesis allows the manufacturing of microcapsules with 40% DEX. According to high performance liquid chromatography (HPLC) analysis, 80% of the drug was released within 24 h from the capsules consisting of three bilayers of polystyrene sulfonate (PSS) and poly(allylamine)hydrochloride (PAH). The prepared scaffolds functionalized with CaCO3 microparticles loaded with DEX and coated with PE bilayers showed hydrophilic surface properties with a water contact angle below 5°. Mouse embryonic fibroblast cells were seeded on Ti6Al4V scaffolds with and without LbL surface modification. The surface modification with LbL PE microcapsules with CaCO3 core affected cell morphology in vitro. The results confirmed that DEX had no toxic effect and did not prevent cell adhesion and spreading, thus no cytotoxic effect was observed, which will be further studied in vivo.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.matchemphys.2021.125099
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667939

MARC

LEADER 00000naa0a2200000 4500
001 667939
005 20250527115009.0
035 |a (RuTPU)RU\TPU\network\39150 
035 |a RU\TPU\network\36621 
090 |a 667939 
100 |a 20220517d2021 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Functionalization of additive-manufactured Ti6Al4V scaffolds with poly(allylamine hydrochloride)/poly(styrene sulfonate) bilayer microcapsule system containing dexamethasone  |f E. A. Chudinova, A. Koptyug, Yu. R. Mukhortova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 89 tit.] 
330 |a Porous titanium alloy Ti6Al4V scaffolds manufactured via electron beam melting (EBM®) reveal broad prospects for applications in bone tissue engineering. However, local inflammation and even implant failure may occur while placing an implant into the body. Thus, the application of drug carriers to the surface of a metallic implant can provide treatment at the inflammation site. In this study, we propose to use polyelectrolyte (PE) microcapsules formed by layer-by-layer (LbL) synthesis loaded with both porous calcium carbonate (CaCO3) microparticles and the anti-inflammatory drug dexamethasone (DEX) to functionalize implant surfaces and achieve controlled drug release. Scanning electron microscopy indicated that the CaCO3 microparticles coated with PE bilayers loaded with DEX had a spherical shape with a diameter of 2.3 ± 0.2 µm and that the entire scaffold surface was evenly coated with the microcapsules. UV spectroscopy showed that LbL synthesis allows the manufacturing of microcapsules with 40% DEX. According to high performance liquid chromatography (HPLC) analysis, 80% of the drug was released within 24 h from the capsules consisting of three bilayers of polystyrene sulfonate (PSS) and poly(allylamine)hydrochloride (PAH). The prepared scaffolds functionalized with CaCO3 microparticles loaded with DEX and coated with PE bilayers showed hydrophilic surface properties with a water contact angle below 5°. Mouse embryonic fibroblast cells were seeded on Ti6Al4V scaffolds with and without LbL surface modification. The surface modification with LbL PE microcapsules with CaCO3 core affected cell morphology in vitro. The results confirmed that DEX had no toxic effect and did not prevent cell adhesion and spreading, thus no cytotoxic effect was observed, which will be further studied in vivo. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Materials Chemistry and Physics 
463 |t Vol. 273  |v [125099, 14 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a additive manufacturing 
610 1 |a Ti6Al4V scaffolds 
610 1 |a surface modification 
610 1 |a calcium carbonate 
610 1 |a microparticles 
610 1 |a dexamethasone 
610 1 |a микрочастицы 
610 1 |a добавки 
610 1 |a поверхности 
701 1 |a Chudinova  |b E. A.  |c physicist  |c laboratory assistant of Tomsk Polytechnic University  |f 1993-  |g Ekaterina Aleksandrovna  |3 (RuTPU)RU\TPU\pers\34765 
701 1 |a Koptyug  |b A.  |g Andrey 
701 1 |a Mukhortova  |b Yu. R.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1976-  |g Yulia Ruslanovna  |3 (RuTPU)RU\TPU\pers\46606  |9 22264 
701 1 |a Pryadko  |b A.  |c Specialist in the field of nuclear technologies  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Artyom  |3 (RuTPU)RU\TPU\pers\46948  |9 22547 
701 1 |a Volkova  |b A. P.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1998-  |g Anastasia Petrovna  |3 (RuTPU)RU\TPU\pers\47017 
701 1 |a Ivanov  |b A. A.  |c specialist in the field of Electrophysics  |c engineer of Tomsk Polytechnic University  |f 1990-  |g Aleksey Alekseevich  |3 (RuTPU)RU\TPU\pers\35679 
701 1 |a Plotnikov  |b E. V.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Chemical Sciences  |f 1983-  |g Evgeny Vladimirovich  |3 (RuTPU)RU\TPU\pers\32469  |9 16417 
701 1 |a Khan  |b E. A.  |c chemical engineer  |c Associate Scientist of Tomsk Polytechnic University  |f 1997-  |g Elena Alekseevna  |3 (RuTPU)RU\TPU\pers\47219 
701 1 |a Epple  |b M.  |g Matthias 
701 1 |a Sokolova  |b V.  |g Viktoriya 
701 1 |a Prymak  |b O.  |g Oleg 
701 1 |a Douglas  |b T.  |g Timothy 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 0 |a RU  |b 63413507  |c 20220517  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.matchemphys.2021.125099 
942 |c CF