Hybrid pseudo-direct numerical simulation of high Rayleigh number flows up to 10{11}

Opis bibliograficzny
Parent link:Journal of Thermal Analysis and Calorimetry
Vol. 147.— 2021.— [10 p.]
1. autor: Nee A. E. Aleksandr Eduardovich
Korporacja: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Kolejni autorzy: Chamkha A. J. Ali
Streszczenie:Title screen
This paper examines the capability of hybrid lattice Boltzmann method to simulate developed turbulent buoyancy-driven flows in closed rectangular cavities. The two-relaxation time mesoscopic lattice Boltzmann method is used as a fluid dynamics solver, whereas the thermal behavior is described in terms of the macroscopic energy equation. Numerical simulation is performed for air-filled square and tall cavities in a range of the Rayleigh number 109≤Ra≤1011109≤Ra≤1011. An in-house numerical code is developed in this study and successfully validated against up-to-date numerical and experimental data of other researches. It is found that the proposed hybrid approach accurately predicts the location of thermal plumes at the isothermal walls despite an insignificant error in the heat transfer rate with the Ra≥3•1010Ra≥3•1010.
Режим доступа: по договору с организацией-держателем ресурса
Wydane: 2021
Hasła przedmiotowe:
Dostęp online:https://doi.org/10.1007/s10973-021-11073-x
Format: Elektroniczne Rozdział
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667919
Opis
Streszczenie:Title screen
This paper examines the capability of hybrid lattice Boltzmann method to simulate developed turbulent buoyancy-driven flows in closed rectangular cavities. The two-relaxation time mesoscopic lattice Boltzmann method is used as a fluid dynamics solver, whereas the thermal behavior is described in terms of the macroscopic energy equation. Numerical simulation is performed for air-filled square and tall cavities in a range of the Rayleigh number 109≤Ra≤1011109≤Ra≤1011. An in-house numerical code is developed in this study and successfully validated against up-to-date numerical and experimental data of other researches. It is found that the proposed hybrid approach accurately predicts the location of thermal plumes at the isothermal walls despite an insignificant error in the heat transfer rate with the Ra≥3•1010Ra≥3•1010.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s10973-021-11073-x