Modified Artificial Ecosystem-Based Optimization for Multilevel Thresholding Image Segmentation

Dades bibliogràfiques
Parent link:Mathematics
Vol. 9, iss. 19.— 2021.— [2363, 25 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Altres autors: Ewees A. A. Ahmed, Abualigah L. Laith, Yousri D. Dalia, Sahlol A. T. Ahmed, Al-qaness M. A. A. Mohammed, Alshathri S. Samah, Mokhamed Elsaed (Mohamed Abd Elaziz) A. M. Akhmed Mokhamed
Sumari:Title screen
Multilevel thresholding is one of the most effective image segmentation methods, due to its efficiency and easy implementation. This study presents a new multilevel thresholding method based on a modified artificial ecosystem-based optimization (AEO). The differential evolution (DE) is applied to overcome the shortcomings of the original AEO. The main idea of the proposed method, artificial ecosystem-based optimization differential evolution (AEODE), is to employ the operators of the DE as a local search of the AEO to improve the ecosystem of solutions. We used benchmark images to test the performance of the AEODE, and we compared it to several existing approaches. The proposed AEODE achieved a high performance when evaluated by the structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and fitness values. Moreover, the AEODE outperformed the basic version of the AEO concerning SSIM and PSNR by 78% and 82%, respectively, which reserves the best features for each of AEO and DE.
Publicat: 2021
Matèries:
Accés en línia:https://doi.org/10.3390/math9192363
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667751

Ítems similars