Modified Artificial Ecosystem-Based Optimization for Multilevel Thresholding Image Segmentation

Podrobná bibliografie
Parent link:Mathematics
Vol. 9, iss. 19.— 2021.— [2363, 25 p.]
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Další autoři: Ewees A. A. Ahmed, Abualigah L. Laith, Yousri D. Dalia, Sahlol A. T. Ahmed, Al-qaness M. A. A. Mohammed, Alshathri S. Samah, Mokhamed Elsaed (Mohamed Abd Elaziz) A. M. Akhmed Mokhamed
Shrnutí:Title screen
Multilevel thresholding is one of the most effective image segmentation methods, due to its efficiency and easy implementation. This study presents a new multilevel thresholding method based on a modified artificial ecosystem-based optimization (AEO). The differential evolution (DE) is applied to overcome the shortcomings of the original AEO. The main idea of the proposed method, artificial ecosystem-based optimization differential evolution (AEODE), is to employ the operators of the DE as a local search of the AEO to improve the ecosystem of solutions. We used benchmark images to test the performance of the AEODE, and we compared it to several existing approaches. The proposed AEODE achieved a high performance when evaluated by the structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and fitness values. Moreover, the AEODE outperformed the basic version of the AEO concerning SSIM and PSNR by 78% and 82%, respectively, which reserves the best features for each of AEO and DE.
Vydáno: 2021
Témata:
On-line přístup:https://doi.org/10.3390/math9192363
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667751

MARC

LEADER 00000naa0a2200000 4500
001 667751
005 20250404154621.0
035 |a (RuTPU)RU\TPU\network\38962 
035 |a RU\TPU\network\38914 
090 |a 667751 
100 |a 20220419d2021 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Modified Artificial Ecosystem-Based Optimization for Multilevel Thresholding Image Segmentation  |f A. A. Ewees, L. Abualigah, D. Yousri [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 30 tit.] 
330 |a Multilevel thresholding is one of the most effective image segmentation methods, due to its efficiency and easy implementation. This study presents a new multilevel thresholding method based on a modified artificial ecosystem-based optimization (AEO). The differential evolution (DE) is applied to overcome the shortcomings of the original AEO. The main idea of the proposed method, artificial ecosystem-based optimization differential evolution (AEODE), is to employ the operators of the DE as a local search of the AEO to improve the ecosystem of solutions. We used benchmark images to test the performance of the AEODE, and we compared it to several existing approaches. The proposed AEODE achieved a high performance when evaluated by the structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and fitness values. Moreover, the AEODE outperformed the basic version of the AEO concerning SSIM and PSNR by 78% and 82%, respectively, which reserves the best features for each of AEO and DE. 
461 |t Mathematics 
463 |t Vol. 9, iss. 19  |v [2363, 25 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a image segmentation 
610 1 |a multilevel thresholding 
610 1 |a artificial ecosystem-based optimization (AEO) 
610 1 |a differential evolution (DE) 
610 1 |a optimization algorithms 
610 1 |a сегментация 
610 1 |a изображения 
610 1 |a обработка 
610 1 |a оптимизация 
610 1 |a экосистемы 
610 1 |a эволюция 
610 1 |a алгоритмы 
701 1 |a Ewees  |b A. A.  |g Ahmed 
701 1 |a Abualigah  |b L.  |g Laith 
701 1 |a Yousri  |b D.  |g Dalia 
701 1 |a Sahlol  |b A. T.  |g Ahmed 
701 1 |a Al-qaness  |b M. A. A.  |g Mohammed 
701 1 |a Alshathri  |b S.  |g Samah 
701 1 |a Mokhamed Elsaed (Mohamed Abd Elaziz)  |b A. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1987-  |g Akhmed Mokhamed  |3 (RuTPU)RU\TPU\pers\46943 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 0 |a RU  |b 63413507  |c 20220419  |g RCR 
856 4 |u https://doi.org/10.3390/math9192363 
942 |c CF