Maximizing the latency fairness in UAV-assisted MEC system

Bibliographic Details
Parent link:IET Intelligent Transport Systems
Vol. 16, iss. 4.— 2022.— [P. 434-444]
Main Author: Hydher H. Hassaan
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Научно-образовательный центр "Автоматизация и информационные технологии"
Other Authors: Dzhayakodi (Jayakody) Arachshiladzh D. N. K. Dushanta Nalin Kumara, Panic S. Stefan
Summary:Title screen
Unmanned aerial vehicles (UAV) assisted edge computing has risen as an assuring technique to accommodate ubiquitous edge computation for resource-limited devices. Thus, this paper proposes an approach to maximize the latency fairness in a UAV-assisted multi-access edge computing (MEC) system. To maximize latency fairness, the authors focus on minimizing the maximum latency experienced among the users. In here, multiple ground users (GUs) offload their tasks to MEC UAV in the absence or unavailability of ground servers due to a disaster or heavy traffic where an iterative algorithm is proposed to minimize the maximum latency among the users subject to minimum control link rate and total power constraints. Sequentially, the UAVs' 3D location, offloading ratio, GUs' transmit power and GUs' computational capacity are optimized. The location of the UAV is optimized by using the novel approach, guided pattern search algorithm while the altitude of the UAV is optimized by analyzing the elevation angle dependant behaviour of the channel gain. A simple approach is utilized for optimizing the offloading ratio of the users by considering the problem as minimizing the point-wise maximum of two convex functions while the bisection method is used to optimize the power allocation. Numerical simulation results illustrate that the proposed approach outperforms other baseline approaches in convergence, minimizing the maximum latency and maximizing and maintaining the fairness among the GUs. Furthermore, it is proved that the guided pattern search algorithm converges at least 3.5 times better while the proposed combined optimization gives 400% fairness gain, in comparison with the baseline approach.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2022
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/70709
https://doi.org/10.1049/itr2.12126
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667739

MARC

LEADER 00000naa0a2200000 4500
001 667739
005 20250404160357.0
035 |a (RuTPU)RU\TPU\network\38950 
090 |a 667739 
100 |a 20220418d2022 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Maximizing the latency fairness in UAV-assisted MEC system  |f H. Hydher, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, S. Panic 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 36 tit.] 
330 |a Unmanned aerial vehicles (UAV) assisted edge computing has risen as an assuring technique to accommodate ubiquitous edge computation for resource-limited devices. Thus, this paper proposes an approach to maximize the latency fairness in a UAV-assisted multi-access edge computing (MEC) system. To maximize latency fairness, the authors focus on minimizing the maximum latency experienced among the users. In here, multiple ground users (GUs) offload their tasks to MEC UAV in the absence or unavailability of ground servers due to a disaster or heavy traffic where an iterative algorithm is proposed to minimize the maximum latency among the users subject to minimum control link rate and total power constraints. Sequentially, the UAVs' 3D location, offloading ratio, GUs' transmit power and GUs' computational capacity are optimized. The location of the UAV is optimized by using the novel approach, guided pattern search algorithm while the altitude of the UAV is optimized by analyzing the elevation angle dependant behaviour of the channel gain. A simple approach is utilized for optimizing the offloading ratio of the users by considering the problem as minimizing the point-wise maximum of two convex functions while the bisection method is used to optimize the power allocation. Numerical simulation results illustrate that the proposed approach outperforms other baseline approaches in convergence, minimizing the maximum latency and maximizing and maintaining the fairness among the GUs. Furthermore, it is proved that the guided pattern search algorithm converges at least 3.5 times better while the proposed combined optimization gives 400% fairness gain, in comparison with the baseline approach. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t IET Intelligent Transport Systems 
463 |t Vol. 16, iss. 4  |v [P. 434-444]  |d 2022 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a беспилотные летательные аппараты 
610 1 |a максимизация 
700 1 |a Hydher  |b H.  |g Hassaan 
701 1 |a Dzhayakodi (Jayakody) Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962  |9 20606 
701 1 |a Panic  |b S.  |g Stefan 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Научно-образовательный центр "Автоматизация и информационные технологии"  |3 (RuTPU)RU\TPU\col\27515 
801 0 |a RU  |b 63413507  |c 20220505  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/70709 
856 4 |u https://doi.org/10.1049/itr2.12126 
942 |c CF