EWOA-OPF: Effective Whale Optimization Algorithm to Solve Optimal Power Flow Problem

Bibliographische Detailangaben
Parent link:Electronics
Vol. 10, iss. 23.— 2021.— [2975, 23 p.]
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Weitere Verfasser: Nadimi-Shahraki M. H. Mohammad, Taghian S. Shokooh, Mirjalili S. Seyedali, Abualigah L. Laith, Mokhamed Elsaed (Mohamed Abd Elaziz) A. M. Akhmed Mokhamed, Oliva Navarro D. A. Diego Alberto
Zusammenfassung:Title screen
The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.
Sprache:Englisch
Veröffentlicht: 2021
Schlagworte:
Online-Zugang:https://doi.org/10.3390/electronics10232975
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667686

MARC

LEADER 00000naa0a2200000 4500
001 667686
005 20250404164903.0
035 |a (RuTPU)RU\TPU\network\38897 
035 |a RU\TPU\network\36371 
090 |a 667686 
100 |a 20220413d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a EWOA-OPF: Effective Whale Optimization Algorithm to Solve Optimal Power Flow Problem  |f M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 101 tit.] 
330 |a The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms. 
461 |t Electronics 
463 |t Vol. 10, iss. 23  |v [2975, 23 p.]  |d 2021 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a optimization 
610 1 |a metaheuristic algorithms 
610 1 |a optimal power flow 
610 1 |a whale optimization algorithm 
610 1 |a оптимизация 
610 1 |a метаэвристические алгоритмы 
701 1 |a Nadimi-Shahraki  |b M. H.  |g Mohammad 
701 1 |a Taghian  |b S.  |g Shokooh 
701 1 |a Mirjalili  |b S.  |g Seyedali 
701 1 |a Abualigah  |b L.  |g Laith 
701 1 |a Mokhamed Elsaed (Mohamed Abd Elaziz)  |b A. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1987-  |g Akhmed Mokhamed  |3 (RuTPU)RU\TPU\pers\46943 
701 1 |a Oliva Navarro  |b D. A.  |c specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Diego Alberto  |3 (RuTPU)RU\TPU\pers\37366 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 0 |a RU  |b 63413507  |c 20220413  |g RCR 
856 4 |u https://doi.org/10.3390/electronics10232975 
942 |c CF