Advancement of automatic generation control in power systems with large share of variable energy resources

Detaylı Bibliyografya
Parent link:Industry Applications Society Annual Meeting (IAS): Conference Record, October 10-14, 2021, Vancouver, Canada. [6 p.].— , 2021
Yazar: Tsydenov E. A. Evgeny Aleksandrovich
Müşterek Yazar: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Отделение электроэнергетики и электротехники
Diğer Yazarlar: Prokhorov A. V. Anton Viktorovich, Li Wang
Özet:Title screen
This paper proposes the practical implementation of an approach for improvement of automatic generation control performance and discusses its particular importance for power systems with large share of variable energy resources. The approach allows advancement of the functional block responsible for estimation of plant participation factors, which increases flexibility and selectivity of power flow control. Real time optimization model was established to reach different control goals. To meet the performance requirements, the artificial neural network was developed for power flow estimation. To improve performance and reduce computational burden, the Lasso regression method was proposed and tested for selection of the model features relevant for the considered control task. Finally, the software tool was developed to implement the algorithm, based on the proposed approach, and tested on a model of real 60 GW interconnection containing 464 nodes and 742 branches. The results of the software testing confirm its feasibility and easy integration into existing automatic generation control systems.
Режим доступа: по договору с организацией-держателем ресурса
Dil:İngilizce
Baskı/Yayın Bilgisi: 2021
Konular:
Online Erişim:https://doi.org/10.1109/IAS48185.2021.9677237
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667228

MARC

LEADER 00000naa0a2200000 4500
001 667228
005 20250819103220.0
035 |a (RuTPU)RU\TPU\network\38433 
035 |a RU\TPU\network\23327 
090 |a 667228 
100 |a 20220309d2021 k y0engy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Advancement of automatic generation control in power systems with large share of variable energy resources  |f E. A. Tsydenov, A. V. Prokhorov, Li Wang 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 28 tit.] 
330 |a This paper proposes the practical implementation of an approach for improvement of automatic generation control performance and discusses its particular importance for power systems with large share of variable energy resources. The approach allows advancement of the functional block responsible for estimation of plant participation factors, which increases flexibility and selectivity of power flow control. Real time optimization model was established to reach different control goals. To meet the performance requirements, the artificial neural network was developed for power flow estimation. To improve performance and reduce computational burden, the Lasso regression method was proposed and tested for selection of the model features relevant for the considered control task. Finally, the software tool was developed to implement the algorithm, based on the proposed approach, and tested on a model of real 60 GW interconnection containing 464 nodes and 742 branches. The results of the software testing confirm its feasibility and easy integration into existing automatic generation control systems. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 |t Industry Applications Society Annual Meeting (IAS)  |o Conference Record, October 10-14, 2021, Vancouver, Canada  |v [6 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a automatic generation control 
610 1 |a dimensionality reduction 
610 1 |a machine learning 
610 1 |a participation factors 
610 1 |a power flow analysis 
610 1 |a wind power 
610 1 |a renewable energy sources 
700 1 |a Tsydenov  |b E. A.  |c specialist in the field of electrical engineering  |c Senior Laboratory Assistant of] Tomsk Polytechnic University  |f 1996-  |g Evgeny Aleksandrovich  |3 (RuTPU)RU\TPU\pers\46098 
701 1 |a Prokhorov  |b A. V.  |c specialist in the field of electricity  |c acting head, associate Professor, Deputy Director on educational work of Tomsk Polytechnic University, candidate of technical Sciences  |f 1985-  |g Anton Viktorovich  |3 (RuTPU)RU\TPU\pers\32985  |9 16830 
701 0 |a Li Wang 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Отделение электроэнергетики и электротехники  |3 (RuTPU)RU\TPU\col\23505 
801 2 |a RU  |b 63413507  |c 20220309  |g RCR 
856 4 |u https://doi.org/10.1109/IAS48185.2021.9677237 
942 |c CF