Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Russian Physics Journal
Vol. 60, iss. 9.— 2018.— [P. 1461-1468]
প্রধান লেখক: Shapovalov A. V. Aleksandr Vasilyevich
সংস্থা লেখক: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
সংক্ষিপ্ত:Title screen
The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation.
Режим доступа: по договору с организацией-держателем ресурса
প্রকাশিত: 2018
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.1007/s11182-018-1236-6
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666949

অনুরূপ উপাদানগুলি